【題目】空氣質(zhì)量指數(shù)(簡(jiǎn)稱:)是定量描述空氣質(zhì)量狀況的無(wú)量綱指數(shù),空氣質(zhì)量按照大小分為六級(jí):為優(yōu),為良,為輕度污染,為中度污染,為重度污染,為嚴(yán)重污染.下面記錄了北京市天的空氣質(zhì)量指數(shù),根據(jù)圖表,下列結(jié)論錯(cuò)誤的是( )
A. 在北京這天的空氣質(zhì)量中,按平均數(shù)來(lái)考察,最后天的空氣質(zhì)量?jī)?yōu)于最前面天的空氣質(zhì)量 B. 在北京這天的空氣質(zhì)量中,有天達(dá)到污染程度
C. 在北京這天的空氣質(zhì)量中,12月29日空氣質(zhì)量最好 D. 在北京這天的空氣質(zhì)量中,達(dá)到空氣質(zhì)量?jī)?yōu)的天數(shù)有天
【答案】C
【解析】分析:通過(guò)題目所提供的圖表得出22個(gè)數(shù)據(jù),研究在各區(qū)間上的數(shù)據(jù)個(gè)數(shù),對(duì)選項(xiàng)逐一驗(yàn)證得到答案.
詳解:因?yàn)?/span>,
所以在北京這天的空氣質(zhì)量中,按平均數(shù)來(lái)考察,
最后天的空氣質(zhì)量?jī)?yōu)于最前面天的空氣質(zhì)量,
即選項(xiàng)A正確;
不低于100的數(shù)據(jù)有3個(gè):,
所以在北京這天的空氣質(zhì)量中,有天達(dá)到污染程度,
即選項(xiàng)B正確;
因?yàn)?2月29日的為225,為重度污染,
該天的空氣質(zhì)量最差,即選項(xiàng)C錯(cuò)誤;
在的數(shù)據(jù)有6個(gè):,
即達(dá)到空氣質(zhì)量?jī)?yōu)的天數(shù)有天,
即選項(xiàng)D正確.故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線經(jīng)過(guò)點(diǎn),過(guò)作直線與拋物線相切.
(1)求直線的方程;
(2)如圖,直線∥,與拋物線交于,兩點(diǎn),與直線交于點(diǎn),是否存在常數(shù),使.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓,拋物線的焦點(diǎn)均在軸上,的中心和的頂點(diǎn)均為坐標(biāo)原點(diǎn).下表給出坐標(biāo)的五個(gè)點(diǎn)中,有兩個(gè)點(diǎn)在上,另有兩個(gè)點(diǎn)在上. 則橢圓的方程為_____,的左焦點(diǎn)到的準(zhǔn)線之間的距離為_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,動(dòng)物園要建造一面靠墻的2間面積相同的矩形熊貓居室,如果可供建造圍墻的材料總長(zhǎng)是36m。
(1)把每間熊貓居室的面積s(單位:)表示為寬x(單位:m)的函數(shù),求函數(shù)的解析式,并寫(xiě)出定義域;
(2)當(dāng)寬為多少時(shí)才能使所建造的每間熊貓居室面積最大?每間熊貓居室最大面積是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ax2-ax-xln x,且f(x)≥0.
(1)求a;
(2)證明:f(x)存在唯一的極大值點(diǎn)x0,且e-2<f(x0)<2-2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2017年11月、12月全國(guó)大范圍流感爆發(fā),為研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,一興趣小組抄錄了某醫(yī)院11月到12月間的連續(xù)6個(gè)星期的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:
日期 | 第一周 | 第二周 | 第三周 | 第四周 | 第五周 | 第六周 |
晝夜溫差x(°C) | 10 | 11 | 13 | 12 | 8 | 6 |
就診人數(shù)y(個(gè)) | 22 | 25 | 29 | 26 | 16 | 12 |
該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn)。
(Ⅰ)求選取的2組數(shù)據(jù)恰好是相鄰兩個(gè)星期的概率;
(Ⅱ)若選取的是第一周與第六周的兩組數(shù)據(jù),請(qǐng)根據(jù)第二周到第五周的4組數(shù)據(jù),求出關(guān)于的線性回歸方程;
(Ⅲ)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2人,則認(rèn)為得到的線性回歸方程是理想的,試問(wèn)該小組所得線性回歸方程是否理想?
(參考公式: )
參考數(shù)據(jù): 1092, 498
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)若時(shí),求與的交點(diǎn)坐標(biāo);
(2)若上的點(diǎn)到距離的最大值為,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線的焦點(diǎn)為,過(guò)焦點(diǎn)且斜率存在的直線與拋物線交于兩點(diǎn),且點(diǎn)在點(diǎn)上方,點(diǎn)與點(diǎn)關(guān)于軸對(duì)稱.
(1)求證:直線過(guò)某一定點(diǎn);
(2)當(dāng)直線的斜率為正數(shù)時(shí),若以為直徑的圓過(guò),求的內(nèi)切圓與的外接圓的半徑之比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面四邊形中(如圖1),為的中點(diǎn),,,且,,現(xiàn)將此平面四邊形沿折起使二面角為直二面角,得到立體圖形(如圖2),又為平面內(nèi)一點(diǎn),并且為正方形,設(shè),,分別為,,的中點(diǎn).
(Ⅰ)求證:面面;
(Ⅱ)在線段上是否存在一點(diǎn),使得面與面所成二面角的余弦值為?若存在,求線段的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com