【題目】已知函數(shù),在區(qū)間上有最大值,最小值,設函數(shù).
(1)求的值;
(2)不等式在上恒成立,求實數(shù)的取值范圍;
(3)方程有三個不同的實數(shù)解,求實數(shù)的取值范圍.
【答案】(1);(2);(3)
【解析】
(1)利用二次函數(shù)閉區(qū)間上的最值,通過a與0的大小討論,列出方程,即可求a,b的值;
(2)轉(zhuǎn)化不等式f(2x)﹣k2x≥0,為k在一側,另一側利用換元法通過二次函數(shù)在x∈[﹣1,1]上恒成立,求出最值,即可求實數(shù)k的取值范圍;
(3)化簡方程f(|2x﹣1|)+k(3)=0,轉(zhuǎn)化為兩個函數(shù)的圖象的交點的個數(shù),利用方程有三個不同的實數(shù)解,推出不等式然后求實數(shù)k的取值范圍.
解:(1)g(x)=a(x﹣1)2+1+b﹣a,
∵a>0,∴g(x)在[2,3]上為增函數(shù),
故,可得 ,.
∴a=1,b=0
(2)方程f(2x)﹣k2x≥0化為2x2≥k2x,
k≤1
令t,k≤t2﹣2t+1,
∵x∈[﹣1,1],∴t,記φ(t)=t2﹣2t+1,
∴φ(t)min=φ(1)=0,
∴k≤0.
(3)由f(|2x﹣1|)+k(3)=0
得|2x﹣1|(2+3k)=0,
|2x﹣1|2﹣(2+3k)|2x﹣1|+(1+2k)=0,|2x﹣1|≠0,
令|2x﹣1|=t,則方程化為t2﹣(2+3k)t+(1+2k)=0(t≠0),
∵方程|2x﹣1|(2+3k)=0有三個不同的實數(shù)解,
∴由t=|2x﹣1|的圖象(如圖)知,
t2﹣(2+3k)t+(1+2k)=0有兩個根t1、t2,且0<t1<1<t2或0<t1<1,t2=1,
記φ(t)=t2﹣(2+3k)t+(1+2k),
則或
∴k>0.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= .
(1)求函數(shù)f(x)的定義域和值域;
(2)設F(x)=m+f(x),求函數(shù)F(x)的最大值的表達式g(m).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為弘揚民族古典文化,市電視臺舉行古詩詞知識競賽,某輪比賽由節(jié)目主持人隨機從題庫中抽取題目讓選手搶答,回答正確將給該選手記正10分,否則記負10分.根據(jù)以往統(tǒng)計,某參賽選手能答對每一個問題的概率均為;現(xiàn)記“該選手在回答完個問題后的總得分為”.
(1)求且()的概率;
(2)記,求的分布列,并計算數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下面幾種推理過程是演繹推理的是( 。
A. 某校高三有8個班,1班有51人,2班有53人,3班有52人,由此推測各班人數(shù)都超過50人
B. 由三角形的性質(zhì),推測空間四面體的性質(zhì)
C. 平行四邊形的對角線互相平分,菱形是平行四邊形,所以菱形的對角線互相平分
D. 在數(shù)列中,,可得,由此歸納出的通項公式
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知.
(1)若x,,求,的值;
(2)若x,,試判斷的奇偶性;
(3)若函數(shù)在其定義域上是增函數(shù),,,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】f(x)是定義在(0,+∞)上的單調(diào)增函數(shù),滿足f(xy)=f(x)+f(y),f(3)=1,當f(x)+f(x-8)≤2時,x的取值范圍是( )
A.(8,+∞)B.(8,9]C.[8,9]D.(0,8)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù);
(1)當時,若,求的取值范圍;
(2)若定義在上奇函數(shù)滿足,且當時, ,
求在上的反函數(shù);
(3)對于(2)中的,若關于的不等式在上恒成立,求實
數(shù)的取值范圍;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓上一動點,過點作軸,垂足為點,中點為.
(1)當在圓上運動時,求點的軌跡的方程;
(Ⅱ)過點的直線與交于兩點,當時,求線段的垂直平分線方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com