【題目】已知函數(shù);
(1)當(dāng)時,若,求的取值范圍;
(2)若定義在上奇函數(shù)滿足,且當(dāng)時, ,
求在上的反函數(shù);
(3)對于(2)中的,若關(guān)于的不等式在上恒成立,求實
數(shù)的取值范圍;
【答案】(1);(2);(3);
【解析】試題分析:(1)根據(jù)題意,根據(jù)對數(shù)函數(shù)的增減性及真數(shù)大于零,列出不等式,求解即可;
(2)根據(jù)條件得到其周期為4,當(dāng)時, 再根據(jù)上述性質(zhì)及奇函數(shù), ,求其反函數(shù),同理當(dāng)時, ,也可求出函數(shù)的反函數(shù);
(3)不等式恒成立轉(zhuǎn)化為恒成立,
即,分類討論后,綜合討論結(jié)果,可得實數(shù)t的取值范圍.
試題解析:(1)原不等式可化為,
∴,得;
(2)∵是奇函數(shù),∴ ,
當(dāng)時, , ,此時, ,所以,
當(dāng)時, , ,此時, ,所以, ,
綜上,
(3)由題意知, 在上是增函數(shù),可證明在上是減函數(shù),由知,設(shè),分別討論解得.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的定義域為,其圖象關(guān)于點中心對稱,其導(dǎo)函數(shù)為,當(dāng)時, ,則不等式的解集為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 =(sinx,2cosx), =(5 cosx,cosx),函數(shù)f(x)= +| |2﹣ .
(1)求函數(shù)f(x)的最小正周期;
(2)若x∈( , )時,f(x)=﹣3,求cos2x的值;
(3)若cosx≥ ,x∈(﹣ , ),且f(x)=m有且僅有一個實根,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】要得到函數(shù) 的圖象,只需要將函數(shù)y=sin3x的圖象( )m.
A.向右平移 個單位
B.向左平移 個單位
C.向右平移 個單位
D.向左平移 個單位
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四邊形ABCD中,∠D=2∠B,且AD=1,CD=3,cos∠B=
(1)求△ACD的面積;
(2)若BC=2 ,求AB的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:y2=2px(p>0),其焦點為F(1,0),過F作斜率為k的直線交拋物線C于A、B兩點,交其準(zhǔn)線于P點.
(1)求P的值;
(2)設(shè)|PA|+|PB|=λ|PA||PB||PF|,若k∈[ ,1],求實數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,函數(shù)與軸交于兩點,點在拋物線上(點在第一象限),∥.記,梯形面積為.
(Ⅰ)求面積以為自變量的函數(shù)解析式;
(Ⅱ)若其中為常數(shù)且,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知對任意x∈R,恒有f(﹣x)=﹣f(x),g(﹣x)=g(x),且當(dāng)x>0時,f′(x)>0,g′(x)>0,則當(dāng)x<0時有( )
A.f′(x)>0,g′(x)>0
B.f′(x)>0,g′(x)<0
C.f′(x)<0,g′(x)>0
D.f′(x)<0,g′(x)<0
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com