【題目】如圖,函數(shù)軸交于兩點,點在拋物線上(點在第一象限),.記,梯形面積為

求面積為自變量的函數(shù)解析式;

其中為常數(shù)且的最大值.

【答案】 ;(II時, 的最大值為; 時, 的最大值為

【解析】試題分析:根據(jù)題意設點C的橫坐標為x,點C在拋物線上,求出點C的縱坐標,根據(jù)拋物線的對稱性得出點D的坐標,利用拋物線方程求出點A、B的坐標,從而借助梯形面積公式表示面積S,寫出定義域要求;對函數(shù)求導,注意定義域,對參數(shù)的不同情況進行討論,求出面積的最大值.

試題解析:

(Ⅰ)依題意點的橫坐標為,的縱坐標為

的橫坐標滿足方程,解得,

所以

由點在第一象限,得

所以關于的函數(shù)式為

(Ⅱ)記,

,得

,即時, 的變化情況如下:

極大值

所以,當時, 取得最大值,且最大值為

,即時, 恒成立,

所以, 的最大值為

綜上, 時, 的最大值為; 時, 的最大值為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知單調遞增的等比數(shù)列滿足:

(1)求數(shù)列的通項公式;

(2)若,數(shù)列的前項和為 , 成立的正整數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1時,若,求的取值范圍;

2若定義在上奇函數(shù)滿足,且當時, ,

上的反函數(shù)

3對于(2)中的,若關于的不等式上恒成立,求實

數(shù)的取值范圍;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)=
(1)求函數(shù)f(x)的定義域A;
(2)設B={x|﹣1<x<2},當實數(shù)a、b∈(B∩RA)時,證明: |.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線y2=2px(p>0)上一點M(1,m)(m>0)到其焦點的距離為5,雙曲線 的左頂點為A,若雙曲線一條漸近線與直線AM平行,則實數(shù)a等于(
A.
B.
C.3
D.9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) ,若函數(shù)g(x)=f(x)﹣m有3個零點,則實數(shù)m的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= ﹣aln(1+x)(a∈R),g(x)=x2emx(m∈R).
(1)當a=1,求函數(shù)f(x)的最大值
(2)當a<0,且對任意實數(shù)x1 , x2∈[0,2],f(x1)+1≥g(x2)恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知全集U=R, ,B={x|log3x≤2}. (Ⅰ)求A∩B;
(Ⅱ)求U(A∪B).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四棱錐P﹣ABCD中,底面ABCD是邊長為2的菱形,∠BAD=60°,PD⊥底面ABCD,點M、N分別是棱AB、CD的中點.
(1)證明:BN⊥平面PCD;
(2)在線段PC上是否存在點H,使得MH與平面PCD所成最大角的正切值為 ,若存在,請求出H點的位置;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案