分析:(I)由f(x)求導函數(shù)f′(x),f(x)在x=2處取得極值,得f′(2)=0,求出a的值;
(II)對f(x)的導函數(shù)f′(x),討論f′(x)>0時,函數(shù)是增函數(shù),f′(x)<0時,函數(shù)是減函數(shù);得f(x)的單調區(qū)間;
(Ⅲ)a=1時,求出f(x)在(0,1)上的值域A;b<0時,g(x)在(0,1)上的值域B;由題意A⊆B;從而求出b的取值范圍.
解答:解:(I)∵f(x)=ln(ax+1)+
-1,∴f′(x)=
-
=
a(x+1)2-2(ax+1) |
(ax+1)(x+1)2 |
=
由f(x)在x=2處取得極值,得f′(2)=0,即5a-2=0,
∴
a=;
(II)∵f′(x)=
(其中a>0,且x≥0),
若a≥2,x≥0時,得f′(x)>0
即f(x)在[0,+∞)上是增函數(shù),
若0<a<2時,令f′(x)=0,有x=
,或x=-
(舍去)
x |
(0,) |
|
(+∞) |
f′(x) |
- |
0 |
+ |
f(x) |
減函數(shù) |
|
增函數(shù) |
∴f(x)的單調減區(qū)間是(0,
),單調增區(qū)間是 (
,+∞),
(Ⅲ)當a=1時,由(2)得f(x)在(0,1)上是減函數(shù),
∴l(xiāng)n2<f(x)<1,即f(x)的值域A=(ln2,1);
∵g(x)=
bx
3-bx,∴g′(x)=bx
2-b=b(x-1)(x+1),且b<0,∴x∈(0,1)時g′(x)>0;
∴g(x)在(0,1)上是增函數(shù).∴g(x)的值域B=(0,-
b);
由任取x
1∈(0,1),存在x
2∈(0,1),使得f(x
1)=g(x
2),∴A⊆B;
即-
b≥1,∴b≤-
;
∴b的取值范圍是{b|b≤-
}.
點評:本題考查了利用導函數(shù)研究函數(shù)的單調性與極值的問題,以及函數(shù)的值域問題,是較難的題目.