(1)若上的最大值是,求的值;
(2)若對于任意,總存在,使得成立,求的取值范圍; 
(3)若上有解,求的取值范圍.

(1) (2)    (3)

解析

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

(14分)已知
(1)求函數(shù)f(x)的表達式?
(2)求函數(shù)f(x)的定義域?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知偶函數(shù)滿足:當時,
時,
(1) 求當時,的表達式;
(2) 試討論:當實數(shù)滿足什么條件時,函數(shù)有4個零點,
且這4個零點從小到大依次構成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

對于函數(shù) 
(1)判斷函數(shù)的單調性并證明;  (2)是否存在實數(shù)a使函數(shù)f (x)為奇函數(shù)?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分12分)探究函數(shù)的最小值,并確定取得最小值時x的值. 列表如下, 請觀察表中y值隨x值變化的特點,完成以下的問題.

x

0.25
0.5
0.75
1
1.1
1.2
1.5
2
3
5

y

8.063
4.25
3.229
3
3.028
3.081
3.583
5
9.667
25.4

已知:函數(shù)在區(qū)間(0,1)上遞減,問:
(1)函數(shù)在區(qū)間                  上遞增.當               時,                 ;
(2)函數(shù)在定義域內有最大值或最小值嗎?如有,是多少?此時x為何值?(直接回答結果,不需證明)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=是定義在(-1,1)上的奇函數(shù),且f()=.
(1)求函數(shù)f(x)的解析式;
(2)用定義證明f(x)在(-1,1)上是增函數(shù);
(3)解不等式f(t-1)+f(t)<0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),
(1)求的值域;
(2)若,且的最小值為,求的遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
設函數(shù)y=f (x)=在區(qū)間 (-2,+∞)上單調遞增,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知二次函數(shù)為偶函數(shù),集合A=為單元素集合
(I)求的解析式
(II)設函數(shù),若函數(shù)上單調,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案