下列四個(gè)條件中,能確定一個(gè)平面的是(  )
A、一條直線和一個(gè)點(diǎn)
B、空間兩條直線
C、空間任意三點(diǎn)
D、兩條平行直線
考點(diǎn):平面的基本性質(zhì)及推論
專(zhuān)題:空間位置關(guān)系與距離
分析:根據(jù)確定平面的公理2和推論逐一判斷即可得解.
解答: 解:對(duì)于答案A:當(dāng)此點(diǎn)在此直線上時(shí)有無(wú)數(shù)個(gè)平面經(jīng)過(guò)這條直線和這個(gè)點(diǎn)故A答案錯(cuò).
對(duì)于答案B:當(dāng)這兩條直線是異面直線時(shí)則根據(jù)異面直線的定義可得這對(duì)異面直線不同在任何一個(gè)平面內(nèi)故B答案錯(cuò).
對(duì)于答案C:當(dāng)這三個(gè)點(diǎn)共線時(shí)經(jīng)過(guò)這三點(diǎn)的平面有無(wú)數(shù)個(gè)故C答案錯(cuò).
對(duì)于答案D:根據(jù)確定平面的公理的推論可知兩條平行線可唯一確定一個(gè)平面故D答案對(duì)
故選:D
點(diǎn)評(píng):本題主要考察確定平面的公理及推論.解題的關(guān)鍵是要對(duì)確定平面的公理及推論理解透徹.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

棱長(zhǎng)為1的正方體ABCD-A1B1C1D1的8個(gè)頂點(diǎn)都在球O的表面上,E、F分別是棱AA1、DD1的中點(diǎn),點(diǎn)P1,P2分別是線段AB,BD1(不包括端點(diǎn))上的動(dòng)點(diǎn),且線段P1P2平行于平面A1ADD1,則
(1)直線EF被球O截得的線段長(zhǎng)為
 

(2)四面體P1P2AB1的體積的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在工商管理學(xué)中,MRP指的是物質(zhì)需要計(jì)劃,基本MRP的體系結(jié)構(gòu)如圖所示.從圖中能看出影響基本MRP的主要因素有( 。﹤(gè).
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

水以勻速注入如圖容器中,試找出與容器對(duì)應(yīng)的水的高度h與時(shí)間t的函數(shù)關(guān)系圖象(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

a=3
b=4
a=b
b=a
PRINT  a,b
END
以上程序輸出的結(jié)果是( 。
A、3,4B、4,4
C、3,3D、4,3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在100件產(chǎn)品中有6件次品,現(xiàn)從中任取3件產(chǎn)品,至少有1件次品的不同取法的種數(shù)是(  )
A、
C
1
6
C
2
94
B、
C
3
100
-
C
3
94
C、
C
1
6
C
2
99
D、
A
3
100
-
A
3
94

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)F1,F(xiàn)2是橢圓
x2
24
+
y2
49
=1的兩個(gè)焦點(diǎn),P是橢圓上的點(diǎn)且|PF1|:|PF2|=4:3,則△PF1F2的面積為( 。
A、24
B、26
C、22
2
D、24
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用反證法證明命題:“若實(shí)系數(shù)一元二次方程ax2+bx+c=0(a≠0)有實(shí)數(shù)根,那么b2-4ac≥0”時(shí),下列假設(shè)正確的是( 。
A、假設(shè)b2-4ac≤0
B、假設(shè)b2-4ac<0
C、假設(shè)b2-4ac≥0
D、假設(shè)b2-4ac>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的右焦點(diǎn)為F(c,0),上頂點(diǎn)為B,離心率為
1
2
,圓F:(x-c)2+y2=a2與x軸交于E、D兩點(diǎn).
(Ⅰ)求
|BD|
|BE|
的值;
(Ⅱ)若c=1,過(guò)點(diǎn)B與圓F相切的直線l與C的另一交點(diǎn)為A,求△ABD的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案