【題目】已知△ABC的三個內(nèi)角A,B,C,滿足sinC= .
(1)判斷△ABC的形狀;
(2)設三邊a,b,c成等差數(shù)列且S△ABC=6cm2 , 求△ABC三邊的長.
【答案】
(1)解:法1:sinC= =tan = = ,
∵sinC≠0,∴cosC=0,
∵0°<C<180°,∴C=90°,
∴△ABC為直角三角形;
法2:由已知等式變形得:cosA+cosB= ,
∴利用正弦、余弦定理化簡得: + = ,
整理得:(a+b)(c2﹣a2﹣b2)=0,
∴a2+b2=c2,
∴△ABC為直角三角形
(2)解:由已知得:a2+b2=c2①,a+c=2b②, ab=6③,
由②得:c=2b﹣a,代入①得:a2+b2=(2b﹣a)2=a2﹣4ab+4b2,即3b2=4ab,
∴3b=4a,即a= b,代入③得:b2=16,
∴b=4cm,a=3cm,c=5cm
【解析】(1)法1:已知等式右邊分子分母利用和差化積公式變形,約分后利用同角三角函數(shù)間的基本關系化簡,再利用誘導公式變形,得到cosC=0,求出C為直角,即可得到三角形為直角三角形;
法2:利用正弦、余弦定理化簡已知等式,整理后利用勾股定理的逆定理即可判斷出三角形為直角三角形;(2)根據(jù)勾股定理列出關系式,再由等差數(shù)列的性質列出關系式,最后再利用三角形面積公式列出關系式,聯(lián)立即可求出a,b,c的值.
【考點精析】解答此題的關鍵在于理解正弦定理的定義的相關知識,掌握正弦定理:,以及對余弦定理的定義的理解,了解余弦定理:;;.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的中心在坐標原點,焦點在軸上,橢圓的短軸端點和焦點所組成的四邊形為正方形,且橢圓上任意一點到兩個焦點的距離之和為.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)若直線與橢圓相交于兩點,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】王府井百貨分店今年春節(jié)期間,消費達到一定標準的顧客可進行一次抽獎活動,隨著抽獎活動的有效開展,參與抽獎活動的人數(shù)越來越多,該分店經(jīng)理對春節(jié)前7天參加抽獎活動的人數(shù)進行統(tǒng)計, 表示第天參加抽獎活動的人數(shù),得到統(tǒng)計表格如下:
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
5 | 8 | 8 | 10 | 14 | 15 | 17 |
經(jīng)過進一步統(tǒng)計分析,發(fā)現(xiàn)與具有線性相關關系.
(1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關于的線性回歸方程;
(2)判斷變量與之間是正相關還是負相關;
(3)若該活動只持續(xù)10天,估計共有多少名顧客參加抽獎.
參與公式: , , .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,某幾何體的三視圖中,俯視圖是邊長為2的正三角形,正視圖和左視圖分別為直角梯形和直角三角形,則該幾何體的體積為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于函數(shù)和,若存在常數(shù),對于任意,不等式都成立,則稱直線是函數(shù)的分界線. 已知函數(shù)為自然對數(shù)的底, 為常數(shù)
(1)討論函數(shù)的單調(diào)性;
(2)設,試探究函數(shù)與函數(shù)是否存在“分界線”?若存在,求出分界線方程;若不存在,試說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線x2=y+1上一定點A(﹣1,0)和兩動點P,Q,當PA⊥PQ時,點Q的橫坐標的取值范圍是( )
A.(﹣∞,﹣3]
B.[1,+∞)
C.[﹣3,1]
D.(﹣∞,﹣3]∪[1,+∞)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在四棱錐中,底面為平行四邊形, , , , 點在底面內(nèi)的射影在線段上,且, , 為的中點, 在線段上,且.
(1)當時,證明:平面平面;
(2)當時,求平面與平面所成的二面角的正弦值及四棱錐的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com