若sin(-70°)=k,則tan110°的值為(  )
A、
k
1-k2
B、-
k
1-k2
C、
1-k2
k
D、-
1-k2
k
考點:運用誘導公式化簡求值,同角三角函數(shù)基本關系的運用
專題:三角函數(shù)的求值
分析:已知等式左邊利用誘導公式化簡求出sin70°的值,進而求出cos70°的值,原式利用誘導公式化簡后將各自的值代入計算即可求出值.
解答: 解:∵sin(-70°)=-sin70°=k,即sin70°=-k,
∴cos70°=
1-(-k)2
=
1-k2

則tan110°=tan(180°-70°)=-tan70°=-
sin70°
cos70°
=-
-k
1-k2
=
k
1-k2

故選:A.
點評:此題考查了運用誘導公式化簡求值,熟練掌握誘導公式是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1的左、右焦點分別為F1,F(xiàn)2,左、右頂點將線段F1F2三等分,則該雙曲線的漸近線方程為( 。
A、y=±2
2
x
B、y=±2x
C、y=±
2
2
x
D、y=±x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知六個點A1(x1,1),B1(x2,-1),A2(x3,1),B2(x4,-1),A3(x5,1),B3(x6,-1),其中(x1<x2<x3<x4<x5<x6,x6-x1=5π)都在函數(shù)f(x)=cos(
π
2
+x)的圖象C上,如果這六點中不同的兩點的連線中點仍在曲線C上,則稱此兩點為“好點組”(兩點不計順序),則上述六點中好點組的個數(shù)為( 。
A、8B、9C、10D、11

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若x,y滿足
x+y-2≥0
kx-y+2≥0
y≥0
且z=y-x的最小值為-2,則k的值為(  )
A、1B、-1C、2D、-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點P是邊長為1的正三角形內(nèi)一點,該點到三角形三邊的距離分別是a,b,c(a,b,c>0),則ab+bc+ca的取值范圍是( 。
A、(0,
1
4
]
B、(0,
1
2
]
C、(0,
3
2
]
D、[
1
4
,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax2+2ax+4(0<a<3),其圖象上兩點的橫坐標x1,x2滿足x1<x2,且x1+x2=1-a,則有( 。
A、f(x1)>f(x2
B、f(x1)=f(x2
C、f(x1)<f(x2
D、大小不確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知某單位有職工120人,其中男職工90人.現(xiàn)在采用分層抽樣(按男女分層)抽取一個樣本,若樣本中有3名女職工,則樣本容量為( 。
A、9B、12C、10D、15

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設F1、F2分別是橢圓
x2
16
+
y2
4
=1的左、右焦點.
(1)若P是該橢圓上的一個動點,求
PF1
PF2
的最大值與最小值;
(2)設過定點M(0,4)的直線l與橢圓交于不同的兩點A、B,且∠AOB為銳角(其中O為坐標原點),求直線l的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

己知函數(shù)f(x)=(nx-n+2)•ex(其中n∈N*
(Ⅰ)求f(x)在[0,2]上的最大值;
(Ⅱ)若函數(shù)g(x)=(nx+2)(nx-15)(n∈N*),求n所能取到的最大正整數(shù),使對任意x>0,都有2f′(x)>g(x)恒成立.

查看答案和解析>>

同步練習冊答案