【題目】已知f(x)=-3x2+a(6-a)x+6.
(1)解關(guān)于a的不等式f(1)>0;
(2)若不等式f(x)>b的解集為(-1,3),求實數(shù)a,b的值.
【答案】(1);(2) .
【解析】
試題分析:(1),即解關(guān)于的一元二次不等式;(2)是關(guān)于的一元二次不等式,不等式解集的兩個端點是對應(yīng)方程的實數(shù)根,可根據(jù)韋達定理,即根與系數(shù)的關(guān)系求實數(shù)的值.
試題解析:(1)∵f(x)=-3x2+a(6-a)x+6,
∴f(1)=-3+a(6-a)+6=-a2+6a+3,
∴原不等式可化為a2-6a-3<0,
解得3-2<a<3+2.
∴原不等式的解集為{a|3-2<a<3+2}.
(2)f(x)>b的解集為(-1,3)等價于方程-3x2+a(6-a)x+6-b=0的兩根為-1,3,
等價于,解得:
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,點E為正方形ABCD邊CD上異于點C,D的動點,將△ADE沿AE翻折成△SAE,使得平面SAE⊥平面ABCE,則下列三個說法中正確的個數(shù)是( )
①存在點E使得直線SA⊥平面SBC
②平面SBC內(nèi)存在直線與SA平行
③平面ABCE內(nèi)存在直線與平面SAE平行
A.0 B.1 C.2 D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項和Sn=3n2+8n,{bn}是等差數(shù)列,且an=bn+bn+1.
(1)求數(shù)列{bn}的通項公式;
(2)令cn=,Tn是數(shù)列{cn}的前n項和,求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的最小值為0,其中,設(shè).
(1)求的值;
(2)對任意,恒成立,求實數(shù)的取值范圍;
(3)討論方程在上根的個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有編號分別為1,2,3,4,5的五道不同的政治題和編號分別為6,7,8,9的四道不同的歷史題.甲同學(xué)從這九道題中一次性隨機抽取兩道題,每道題被抽到的概率是相等的,用符號(x,y)表示事件“抽到的兩道題的編號分別為x,y,且x<y.”.
(1)問有多少個基本事件,并列舉出來;
(2)求甲同學(xué)所抽取的兩道題的編號之和小于17但不小于11的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
已知過點的直線的參數(shù)方程是(為參數(shù)).以平面直角坐標系的原點為極點, 軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程式為.
(Ⅰ)求直線的普通方程和曲線的直角坐標方程;
(Ⅱ)若直線與曲線交于兩點,且,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩位數(shù)學(xué)老師組隊參加某電視臺闖關(guān)節(jié)目,共3關(guān),甲作為嘉賓參與答題,若甲回答錯誤,乙作為親友團在整個通關(guān)過程中至多只能為甲提供一次幫助機會,若乙回答正確,則甲繼續(xù)闖關(guān),若某一關(guān)通不過,則收獲前面所有累積獎金.約定每關(guān)通過得到獎金2000元,設(shè)甲每關(guān)通過的概率為,乙每關(guān)通過的概率為,且各關(guān)是否通過及甲、乙回答正確與否均相互獨立.
(1)求甲、乙獲得2000元獎金的概率;
(2)設(shè)表示甲、乙兩人獲得的獎金數(shù),求隨機變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱ABC-A1B1C1中,側(cè)棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分別是A1C1,BC的中點.
(1)求證:AB⊥平面B1BCC1; 平面ABE⊥平面B1BCC1;
(2)求證:C1F∥平面ABE;
(3)求三棱錐E-ABC的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com