【題目】已知數(shù)列{an}的前n項和Sn=3n2+8n,{bn}是等差數(shù)列,且an=bn+bn+1.
(1)求數(shù)列{bn}的通項公式;
(2)令cn=,Tn是數(shù)列{cn}的前n項和,求證:
【答案】(1)bn=3n+1;(2)見解析.
【解析】試題分析:(1)求等比數(shù)列的通項公式,關(guān)鍵是求出首項和公比,這可直接用首項 和公比 表示出已知并解出即可(可先把已知化簡后再代入);(2)求出 的表達式后,用錯位相減法求其前 項和,然后求其最小值即可得結(jié)論.
試題解析:(1) 由題意知,當(dāng)n≥2時,an=Sn-Sn-1=6n+5;當(dāng)n=1時,a1=S1=11,也符合上式,所以an=6n+5.
設(shè)數(shù)列{bn}的公差為d.由即解得
所以bn=3n+1.
(2) 由(1)知cn==3(n+1)·2n+1.
又Tn=c1+c2+…+cn,
得Tn=3×[2×22+3×23+…+(n+1)×2n+1],
2Tn=3×[2×23+3×24+…+(n+1)×2n+2],
兩式作差,得
-Tn=3×[2×22+23+24+…+2n+1-(n+1)×2n+2]
=3×[4+-(n+1)×2n+2]=-3n·2n+2,
所以Tn=3n·2n+2.
【 方法點睛】本題主要考查等差數(shù)列的通項以及錯位相減法求數(shù)列的前 項和,屬于中檔題.一般地,如果數(shù)列是等差數(shù)列,是等比數(shù)列,求數(shù)列的前項和時,可采用“錯位相減法”求和,一般是和式兩邊同乘以等比數(shù)列的公比,然后作差求解, 在寫出“”與“” 的表達式時應(yīng)特別注意將兩式“錯項對齊”以便下一步準確寫出“”的表達式.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱錐A-BCD中,AB⊥平面BCD,CD⊥BD .
(1)求證:CD⊥平面ABD;
(2)若AB=BD=CD=1,M為AD中點,求三棱錐A-MBC的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了對某課題進行研究,用分層抽樣方法從三所高校的相關(guān)人員中,抽取若干人組成研究小組,有關(guān)數(shù)據(jù)見下表(單位:人)
高校 | 相關(guān)人數(shù) | 抽取人數(shù) |
A | 18 | |
B | 36 | 2 |
C | 54 |
(Ⅰ)求,;
(Ⅱ)若從高校抽取的人中選2人作專題發(fā)言,求這二人都來自高校的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市100戶居民的月平均用電量(單位:度),以,,,,,,分組的頻率分布直方圖如圖:
(Ⅰ)求直方圖中的值;
(Ⅱ)求月平均用電量的眾數(shù)和中位數(shù);
(Ⅲ)在月平均用電量為,,,的四組用戶中,用分層抽樣的方法抽取11戶居民,則月平均用電量在的用戶中應(yīng)抽取多少戶?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分14分)
在四棱錐P-ABCD中,BC∥AD,PA⊥PD,AD=2BC,AB=PB, E為PA的中點.
(1)求證:BE∥平面PCD;
(2)求證:平面PAB⊥平面PCD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解某地參加2015 年夏令營的名學(xué)生的身體健康情況,將學(xué)生編號為,采用系統(tǒng)抽樣的方法抽取一個容量為的樣本,且抽到的最小號碼為,已知這名學(xué)生分住在三個營區(qū),從到在第一營區(qū),從到在第二營區(qū),從到在第三營區(qū),則第一、第二、第三營區(qū)被抽中的人數(shù)分別為( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)若,求函數(shù)的圖象在處的切線方程;
(2)若,試討論方程的實數(shù)解的個數(shù);
(3)當(dāng)時,若對于任意的,都存在,使得,求滿足條件的正整數(shù)的取值的集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=-3x2+a(6-a)x+6.
(1)解關(guān)于a的不等式f(1)>0;
(2)若不等式f(x)>b的解集為(-1,3),求實數(shù)a,b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有外形相同的球分裝三個盒子,每盒10個.其中,第一個盒子中7個球標有字母A、3個球標有字母B;第二個盒子中有紅球和白球各5個;第三個盒子中則有紅球8個,白球2個.試驗按如下規(guī)則進行:先在第一號盒子中任取一球,若取得標有字母A的球,則在第二號盒子中任取一個球;若第一次取得標有字母B的球,則在第三號盒子中任取一個球.如果第二次取出的是紅球,則稱試驗成功,那么試驗成功的概率為( )
A.0.59 B.0.54 C.0.8 D.0.15
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com