直線L:與橢圓E: 相交于A,B兩點,該橢圓上存在點P,使得
△ PAB的面積等于3,則這樣的點P共有(   )
A.1個B.2個C.3個D.4個
B

試題分析:設,即點在第一象限的橢圓上,考慮四邊形的面積
,
所以,因為為定值,
所以的最大值為
所以點不可能在直線的上方,顯然在直線的下方有兩個點.
故選B.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

已知點P在拋物線x2=4y上,且點P到x軸的距離與點P到此拋物線的焦點的距離之比為1:3,則點P到x軸的距離是( 。
A.
1
4
B.
1
2
C.1D.2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

曲線C是平面內與兩個定點F1(-1,0)和F2(1,0)的距離的積等于常數(shù)a2(a>1)的點的軌跡.給出下列三個結論:
①曲線C過坐標原點;
②曲線C關于坐標原點對稱;
③若點P在曲線C上,則△F1PF2的面積不大于a2
其中,所有正確結論的序號是________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知的三個頂點在拋物線上,為拋物線的焦點,點的中點,
(1)若,求點的坐標;
(2)求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,設橢圓的左、右焦點分別為,點在橢圓上,,的面積為.
(1)求該橢圓的標準方程;
(2)設圓心在軸上的圓與橢圓在軸的上方有兩個交點,且圓在這兩個交點處的兩條切線相互垂直并分別過不同的焦點,求圓的半徑..

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知圓的方程為,定直線的方程為.動圓與圓外切,且與直線相切.
(1)求動圓圓心的軌跡的方程;
(2)直線與軌跡相切于第一象限的點, 過點作直線的垂線恰好經(jīng)過點,并交軌跡于異于點的點,求直線的方程及的長.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的右焦點為,離心率,是橢圓上的動點.
(1)求橢圓標準方程;
(2)若直線的斜率乘積,動點滿足,(其中實數(shù)為常數(shù)).問是否存在兩個定點,使得?若存在,求的坐標及的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

過點與拋物線有且只有一個交點的直線有(  )
A.4條    B.3條   C.2條  D.1條

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

拋物線的焦點為F,過F作直線交拋物線于A、B兩點,設(  )
A.4       B.8       C.       D.1

查看答案和解析>>

同步練習冊答案