【題目】若函數(shù)f(x)=lg(ax﹣1)﹣lg(x﹣1)在區(qū)間[2,+∞)上是增函數(shù),則a的取值范圍是 .
【答案】<a<1
【解析】解:有題意可得:f(x)=lg ,
∵y=lgx在定義域上是單調(diào)增函數(shù),且函數(shù)f(x)=lg(ax﹣1)﹣lg(x﹣1)在區(qū)間[2,+∞)上是增函數(shù),
∴y= 在[2,+∞)上是增函數(shù),
∴a﹣1<0,∴a<1,
當(dāng)0<a<1時(shí),函數(shù)的定義域?yàn)椋? ),
∴ ,∴a> ,
當(dāng)a≤0時(shí),定義域?yàn)?/span>,
∴ <a<1,
【考點(diǎn)精析】本題主要考查了函數(shù)單調(diào)性的性質(zhì)和對(duì)數(shù)函數(shù)的單調(diào)區(qū)間的相關(guān)知識(shí)點(diǎn),需要掌握函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間 ,不能把單調(diào)性相同的區(qū)間和在一起寫成其并集;a變化對(duì)圖象的影響:在第一象限內(nèi),a越大圖象越靠低;在第四象限內(nèi),a越大圖象越靠高才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC=2,E是PC的中點(diǎn),作EF⊥PB交PB于點(diǎn)F.
(1)證明:PA∥平面EDB;
(2)證明:PB⊥平面EFD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線的普通方程為,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系.
(1)求曲線的極坐標(biāo)方程;
(2)求曲線與焦點(diǎn)的極坐標(biāo),其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰梯形ABCD中,AB∥CD,且AB=2AD,設(shè)∠DAB=θ,θ∈(0, ),以A,B為焦點(diǎn)且過點(diǎn)D的雙曲線的離心率為e1 , 以C,D為焦點(diǎn)且過點(diǎn)A的橢圓的離心率為e2 , 則( )
A.隨著角度θ的增大,e1增大,e1e2為定值
B.隨著角度θ的增大,e1減小,e1e2為定值
C.隨著角度θ的增大,e1增大,e1e2也增大
D.隨著角度θ的增大,e1減小,e1e2也減小
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某印刷廠為了研究印刷單冊(cè)書籍的成本(單位:元)與印刷冊(cè)數(shù)(單位:千冊(cè))之間的關(guān)系,在印制某種書籍時(shí)進(jìn)行了統(tǒng)計(jì),相關(guān)數(shù)據(jù)見下表:
印刷冊(cè)數(shù)(千冊(cè)) | 2 | 3 | 4 | 5 | 8 |
單冊(cè)成本(元) | 3.2 | 2.4 | 2 | 1.9 | 1.7 |
根據(jù)以上數(shù)據(jù),技術(shù)人員分別借助甲、乙兩種不同的回歸模型,得到兩個(gè)回歸方程,方程甲: ,方程乙: .
(1)為了評(píng)價(jià)兩種模型的擬合效果,完成以下任務(wù).
①完成下表(計(jì)算結(jié)果精確到0.1);
印刷冊(cè)數(shù)(千冊(cè)) | 2 | 3 | 4 | 5 | 8 | |
單冊(cè)成本(元) | 3.2 | 2.4 | 2 | 1.9 | 1.7 | |
模型甲 | 估計(jì)值 | 2.4 | 2.1 | 1.6 | ||
殘差 | 0 | -0.1 | 0.1 | |||
模型乙 | 估計(jì)值 | 2.3 | 2 | 1.9 | ||
殘差 | 0.1 | 0 | 0 |
②分別計(jì)算模型甲與模型乙的殘差平方和及,并通過比較, 的大小,判斷哪個(gè)模型擬合效果更好.
(2)該書上市之后,受到廣大讀者熱烈歡迎,不久便全部售罄,于是印刷廠決定進(jìn)行二次印刷.根據(jù)市場(chǎng)調(diào)查,新需求量為8千冊(cè)(概率0.8)或10千冊(cè)(概率0.2),若印刷廠以每?jī)?cè)5元的價(jià)格將書籍出售給訂貨商,問印刷廠二次印刷8千冊(cè)還是10千冊(cè)能獲得更多利潤(rùn)?(按(1)中擬合效果較好的模型計(jì)算印刷單冊(cè)書的成本)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:(x﹣1)2+y2=9內(nèi)有一點(diǎn)P(2,2),過點(diǎn)P作直線l交圓C于A、B兩點(diǎn).
(1)當(dāng)l經(jīng)過圓心C時(shí),求直線l的方程; (寫一般式)
(2)當(dāng)直線l的傾斜角為45°時(shí),求弦AB的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: =1(a>b>0)的離心率為 ,設(shè)F1、F2分別為橢圓的左、右焦點(diǎn),橢圓上任意一個(gè)動(dòng)點(diǎn)M到左焦點(diǎn)F1的距離的最大值 為 +1 (Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線L的斜率為k,且過左焦點(diǎn)F1 , 與橢圓C相交于P、Q兩點(diǎn),若△PQF2的面積為 ,試求k的值及直線L的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于函數(shù)f(x)定義域內(nèi)的任意x1 , x2(x1≠x2),有以下結(jié)論:
①f(0)=1;
②f(1)=0
③f(x1+x2)=f(x1)f(x2)
④f(x1x2)=f(x1)+f(x2)
⑤f( )<
⑥f( )>
當(dāng)f(x)=2x時(shí),則上述結(jié)論中成立的是(填入你認(rèn)為正確的所有結(jié)論的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是奇函數(shù),且定義域?yàn)椋ī仭蓿?)∪(0,+∞).若x<0時(shí),f(x)=﹣x﹣1.
(1)求f(x)的解析式;
(2)解關(guān)于x的不等式f(x)>0.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com