已知直線kx-y+2k-1=0恒過定點(diǎn)A,點(diǎn)A也在直線mx+ny+1=0上,其中m、n均為正數(shù),則
1
m
+
2
n
的最小值為( 。
A、2B、4C、8D、6
考點(diǎn):基本不等式
專題:不等式的解法及應(yīng)用
分析:先求得A的坐標(biāo),可得2m+n=1,再根據(jù)
1
m
+
2
n
=(
1
m
+
2
n
)(2m+n),利用基本不等式求得
1
m
+
2
n
的最小值.
解答: 解::已知直線可化為y+1=k(x+2),故定點(diǎn)A(-2,-1),所以2m+n=1.
所以
1
m
+
2
n
=(
1
m
+
2
n
)(2m+n)=4+
n
m
+
4m
n
≥4+4=8,
當(dāng)且僅當(dāng)m=
1
4
、n=
1
2
時(shí),等號成立,
1
m
+
2
n
的最小值為8,
故選:C.
點(diǎn)評:本題主要考查直線經(jīng)過定點(diǎn)問題、基本不等式的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
4-x2
,若0<x1<x2<x3,則
f(x1)
x1
f(x2)
x2
、
f(x3)
x3
的大小關(guān)系是( 。
A、
f(x1)
x1
f(x2)
x2
f(x3)
x3
B、
f(x1)
x1
f(x3)
x3
f(x2)
x2
C、
f(x3)
x3
f(x2)
x2
f(x1)
x1
D、
f(x2)
x2
f(x3)
x3
f(x1)
x1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex,則f′(0)=( 。
A、0B、1C、-1D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{2n-11},則Sn的最小值為(  )
A、S1
B、S5
C、S6
D、S11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列值等于1的定積分是(  )
A、
1
0
x
dx
B、
1
0
(x+1)dx
C、
2
0
1
2
dx
D、
1
0
1
2
dx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果函數(shù)f(x)滿足:對定義域中的任意三個(gè)數(shù)a,b,c,都有f(a),f(b),f(c)是一個(gè)三角形三邊的長,則稱f(x)為“三角形函數(shù)”.在函數(shù)①y=|x|;②y=2x;③y=x+
1
x
(1≤x≤2);④y=4x3-3x2+2(0≤x≤1)中,“三角形函數(shù)”的個(gè)數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn=2n+n,則a4=( 。
A、9B、11C、20D、31

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于R上可導(dǎo)的任意函數(shù)f(x),若滿足(x-3)f′(x)≥0,則必有(  )
A、f(0)+f(5)<2f(3)
B、f(0)+f(5)≤2f(3)
C、f(0)+f(5)≥2f(3)
D、f(0)+f(5)>2f(3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)Sn是數(shù)列{an}的前n項(xiàng)和,且2an+Sn=An2+Bn+C.
(1)當(dāng)A=B=0,C=1時(shí),求an;
(2)若數(shù)列{an}為等差數(shù)列,且A=1,C=-2.
①求an;
②設(shè)bn=
1
an
an+1
+an+1
an
,且數(shù)列{bn}的前n項(xiàng)和為Tn,求T60的值.

查看答案和解析>>

同步練習(xí)冊答案