分析 由數(shù)列的前n項和直接求出首項,當(dāng)n≥2時,由an=Sn-Sn-1求得通項公式,驗(yàn)證首項后得答案.
解答 解:由Sn=n2+n+5.
當(dāng)n=1時,a1=S1=7;
當(dāng)n≥2時,an=Sn-Sn-1=n2+n+5-[(n-1)2+(n-1)+5]=2n.
∵a1=7不適合上式.a(chǎn)n=$\left\{\begin{array}{l}{7,n=1}\\{2n,n≥2}\end{array}\right.$
點(diǎn)評 本題考查數(shù)列遞推式,考查了由數(shù)列的前n項和求數(shù)列的通項公式,關(guān)鍵是對首項的驗(yàn)證,是基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $f(x)=\sqrt{x^2},g(x)=x$ | B. | $f(x)=\frac{{{x^2}-1}}{x-1},g(x)=x+1$ | ||
C. | $f(x)=\sqrt{{x^2}-4},g(x)=\sqrt{x+2}\sqrt{x-2}$ | D. | $f(x)=lg2-lgx,g(x)=lg\frac{2}{x}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?x∈R,2x>0 | B. | ?x∈R,2x≤0 | C. | ?x∈R,2x<0 | D. | ?x∈R,2x≤0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $[\frac{π}{6},\frac{π}{2})∪(\frac{π}{2},\frac{5π}{6}]$ | B. | $[0,\frac{π}{3}]∪[\frac{2π}{3},π)$ | C. | $[\frac{π}{6},\frac{5π}{6}]$ | D. | $[\frac{π}{3},\frac{2π}{3}]$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com