精英家教網 > 高中數學 > 題目詳情

【題目】如圖,在南北方向有一條公路,一半徑為100的圓形廣場(圓心為)與此公路所在直線相切于點,點為北半圓。ɑ)上的一點,過點作直線的垂線,垂足為,計劃在內(圖中陰影部分)進行綠化,設的面積為(單位:),

1)設,將表示為的函數;

2)確定點的位置,使綠化面積最大,并求出最大面積.

【答案】1.

2)當點p距公路邊界時,綠化面積最大,.

【解析】

1)由三角函數的定義可用表示AQ,PQ,從而代入三角形面積公式,得答案;

2)對(1)問中函數求導,利用導數求得最大值,得答案.

1)由題可知,,,.

的面積

.

2

,則(舍),此時

時,,,關于為增函數.

時,,關于為減函數.

所以當時,

此時

故:當點p距公路邊界時,綠化面積最大,.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某個地區(qū)計劃在某水庫建一座至多安裝3臺發(fā)電機的水電站,過去50年的水文資料顯示,水的年入流量(年入流量:一年內上游來水與庫區(qū)降水之和,單位:十億立方米)都在4以上,其中,不足8的年份有10年,不低于8且不超過12的年份有35年,超過12的年份有5年,將年入流量在以上三段的頻率作為相應段的概率,并假設各年的年入流量相互獨立.

1)求未來4年中,至多有1年的年入流量超過12的概率;

2)若水的年入流量與其蘊含的能量(單位:百億萬焦)之間的部分對應數據為如下表所示:

年入流量

6

8

10

12

14

蘊含的能量

1.5

2.5

3.5

5

7.5

用最小二乘法求出關于的線性回歸方程;(回歸方程系數用分數表示)

3)水電站希望安裝的發(fā)電機盡可能運行,但每年發(fā)電機最多可運行臺數受年入流量限制,并有如下關系:

年入流量

發(fā)電機最多可運行臺數

1

2

3

若某臺發(fā)電機運行,則該臺年利潤為5000萬元;若某臺發(fā)電機未運行,則該臺年虧損800萬元,欲使水電站年總利潤的均值達到最大,應安裝發(fā)電機多少臺?

附:回歸方程系數公式:,.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知正方體的外接球O的半徑為,則過該正方體的三個頂點的平面截球O所得的截面的面積為(

A.B.

C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,一個湖的邊界是圓心為O的圓,湖的一側有一條直線型公路l,湖上有橋ABAB是圓O的直徑).規(guī)劃在公路l上選兩個點PQ,并修建兩段直線型道路PB、QA.規(guī)劃要求:線段PB、QA上的所有點到點O的距離均不小于圓O的半徑.已知點A、B到直線l的距離分別為ACBDC、D為垂足),測得AB=10,AC=6,BD=12(單位:百米).

1)若道路PB與橋AB垂直,求道路PB的長;

2)在規(guī)劃要求下,PQ中能否有一個點選在D處?并說明理由;

3)對規(guī)劃要求下,若道路PBQA的長度均為d(單位:百米).求當d最小時,P、Q兩點間的距離.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,某城市小區(qū)有一個矩形休閑廣場,米,廣場的一角是半徑為米的扇形綠化區(qū)域,為了使小區(qū)居民能夠更好的在廣場休閑放松,現(xiàn)決定在廣場上安置兩排休閑椅,其中一排是穿越廣場的雙人靠背直排椅(寬度不計),點在線段上,并且與曲線相切;另一排為單人弧形椅沿曲線(寬度不計)擺放.已知雙人靠背直排椅的造價每米為元,單人弧形椅的造價每米為元,記銳角,總造價為元.

1)試將表示為的函數,并寫出的取值范圍;

2)如何選取點的位置,能使總造價最。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,有一塊半圓形空地,開發(fā)商計劃建造一個矩形游泳池及左右兩側兩個大小相同的矩形休息區(qū),其中半圓的圓心為,半徑為,矩形的一邊上,矩形的一邊上,點在圓周上,在直徑上,且,設.若每平方米游泳池的造價和休息區(qū)造價分別為.

1)記游泳池及休息區(qū)的總造價為,求的表達式;

2)為進行投資預算,當為何值時,總造價最大?并求出總造價的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

1)討論函數的極值點的個數;

2)若有兩個極值點,證明:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某工廠生產的產品中分正品與次品,正品重,次品重,現(xiàn)有5袋產品(每袋裝有10個產品),已知其中有且只有一袋次品(10個產品均為次品)如果將5袋產品以15編號,第袋取出個產品(),并將取出的產品一起用秤(可以稱出物體重量的工具)稱出其重量,若次品所在的袋子的編號是2,此時的重量_________;若次品所在的袋子的編號是,此時的重量_______.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

1)討論的單調性并指出相應單調區(qū)間;

2)若,設是函數的兩個極值點,若,且恒成立,求實數k的取值范圍.

查看答案和解析>>

同步練習冊答案