【題目】已知函數(shù)f(x)=(x﹣2)的定義域?yàn)榧螦,函數(shù)的值域?yàn)榧螧.
(1)求A∪B;
(2)若集合C={x|a≤x≤3a﹣1},且B∩C=C,求實(shí)數(shù)a的取值范圍.
【答案】解(1)函數(shù)f(x)的自變量x需滿(mǎn)足條件,
解得,2<x≤4,所以,A={x|2<x≤4},
對(duì)于函數(shù)g(x),因?yàn)?/span>≤x≤8,
所以,g(x)=log2x∈[﹣2,3],
因此,B={x|﹣2≤x≤3},
所以,A∪B={x|﹣2≤x≤4};
(2)由B∩C=C得,CB,對(duì)集合C討論如下:
①當(dāng)C=時(shí),a>3a﹣1,解得a<,
因?yàn)榭占侨魏渭系淖蛹,故符合題意;
②當(dāng)C≠時(shí),需要滿(mǎn)足下列條件:
,解得,≤a≤,
綜合以上討論得,實(shí)數(shù)a的取值范圍為:(﹣∞,].
【解析】(1)先求出集合A={x|2<x≤4},B={x|﹣2≤x≤3},再直接取它們的并集;
(2)問(wèn)題等價(jià)為CB,再對(duì)集合C分類(lèi)討論,得出實(shí)數(shù)a的取值范圍.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解集合的交集運(yùn)算(交集的性質(zhì):(1)A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A;(2)若A∩B=A,則AB,反之也成立).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,若Ω是長(zhǎng)方體ABCD﹣A1B1C1D1被平面EFGH截去幾何體EFGHB1C1后得到的幾何體,其中E為線(xiàn)段A1B1上異于B1的點(diǎn),F(xiàn)為線(xiàn)段BB1上異于B1的點(diǎn),且EH∥A1D1 , 則下列結(jié)論中不正確的是( )
A.EH∥FG
B.四邊形EFGH是矩形
C.Ω是棱柱
D.Ω是棱臺(tái)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】矩形的兩條對(duì)角線(xiàn)相交于點(diǎn), 邊所在的直線(xiàn)的方程為,點(diǎn)在邊所在的直線(xiàn)上.
(1)求邊所在直線(xiàn)的方程;
(2)求矩形外接圓的方程;
(3)過(guò)點(diǎn)的直線(xiàn)被矩形的外接圓截得的弦長(zhǎng)為,求直線(xiàn)的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某醫(yī)學(xué)院欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,該協(xié)會(huì)分別到氣象局與某醫(yī)院抄錄了1到6月份每月10號(hào)的晝夜溫差情況與因患感冒而就診的人數(shù),得到數(shù)據(jù)資料見(jiàn)下表:
該院確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線(xiàn)性回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(Ⅰ)求選取的2組數(shù)據(jù)恰好是不相鄰的兩個(gè)月的概率;
(Ⅱ)已知選取的是1月與6月的兩組數(shù)據(jù).
(1)請(qǐng)根據(jù)2到5月份的數(shù)據(jù),求出就診人數(shù)關(guān)于晝夜溫差的線(xiàn)性回歸方程;
(2)若由線(xiàn)性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2人,則認(rèn)為得到的線(xiàn)性回歸方程是理想的,試問(wèn)該協(xié)會(huì)所得線(xiàn)性回歸方程是否理想?
(參考公式和數(shù)據(jù):
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知冪函數(shù)f(x)=x﹣m2+m+2(m∈Z)在(0,+∞)上單調(diào)遞增.
(1)求函數(shù)f(x)的解析式;
(2)設(shè)g(x)=f(x)﹣ax+1,a為實(shí)常數(shù),求g(x)在區(qū)間[﹣1,1]上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某車(chē)間計(jì)劃每天生產(chǎn)卡車(chē)模型、賽車(chē)模型、小汽車(chē)模型這三種玩具共100個(gè),已知生產(chǎn)一個(gè)卡車(chē)模型需5分鐘,生產(chǎn)一個(gè)賽車(chē)模型需7分鐘,生產(chǎn)一個(gè)小汽車(chē)模型需4分鐘,且生產(chǎn)一個(gè)卡車(chē)模型可獲利潤(rùn)8元,生產(chǎn)一個(gè)賽車(chē)模型可獲利潤(rùn)9元,生產(chǎn)一個(gè)小汽車(chē)模型可獲利潤(rùn)6元.若總生產(chǎn)時(shí)間不超過(guò)10小時(shí),該公司合理分配生產(chǎn)任務(wù)使每天的利潤(rùn)最大,則最大利潤(rùn)是______________元.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C經(jīng)過(guò)點(diǎn),且圓心在直線(xiàn)上,又直線(xiàn)與圓C交于P,Q兩點(diǎn).
(1)求圓C的方程;
(2)若,求實(shí)數(shù)的值;
(3)過(guò)點(diǎn)作直線(xiàn),且交圓C于M,N兩點(diǎn),求四邊形的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線(xiàn)與拋物線(xiàn)相切,且與軸的交點(diǎn)為,點(diǎn).若動(dòng)點(diǎn)與兩定點(diǎn)所構(gòu)成三角形的周長(zhǎng)為6.
(Ⅰ) 求動(dòng)點(diǎn)的軌跡的方程;
(Ⅱ) 設(shè)斜率為的直線(xiàn)交曲線(xiàn)于兩點(diǎn),當(dāng),且位于直線(xiàn)的兩側(cè)時(shí),證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為減少空氣污染,某市鼓勵(lì)居民用電(減少燃?xì)饣蛉济海,采用分段?jì)費(fèi)的方法計(jì)算電費(fèi).每月用電不超過(guò)100度時(shí),按每度0.57元計(jì)算,每月用電量超過(guò)100度時(shí),其中的100度仍按原標(biāo)準(zhǔn)收費(fèi),超過(guò)的部分每度按0.5元計(jì)算.
(1)設(shè)月用電x度時(shí),應(yīng)交電費(fèi)y元,寫(xiě)出y關(guān)于x的函數(shù)關(guān)系式;
(2)小明家第一季度繳納電費(fèi)情況如下:?jiǎn)栃∶骷业谝患径裙灿秒姸嗌俣龋?
月份 | 一月 | 二月 | 三月 | 合計(jì) |
交費(fèi)金額 | 76元 | 63元 | 45.6元 | 184.6元 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com