【題目】已知, .

(1)討論函數(shù)的單調(diào)性;

(2)記,設(shè) 為函數(shù)圖象上的兩點(diǎn),且.

(i)當(dāng)時(shí),若, 處的切線相互垂直,求證:

(ii)若在點(diǎn), 處的切線重合,求的取值范圍.

【答案】(1)見解析(2)

【解析】試題分析:(1)先求函數(shù)導(dǎo)數(shù),轉(zhuǎn)化為研究導(dǎo)函數(shù)零點(diǎn),即方程=0的根的情況,當(dāng),導(dǎo)函數(shù)不變號,在上單調(diào)遞減,當(dāng)時(shí),有兩個(gè)不等根,列表分析導(dǎo)函數(shù)符號變化規(guī)律,確定對應(yīng)單調(diào)區(qū)間,(2)(i)利用導(dǎo)數(shù)幾何意義化簡條件: 處的切線相互垂直,得,利用基本不等式證明不等式,(ii)先分別求出切線方程,再根據(jù)切線重合得,消元,利用導(dǎo)數(shù)研究函數(shù), 單調(diào)性,確定函數(shù)值域,進(jìn)而確定的取值范圍.

試題解析:解:(1),則,

當(dāng)時(shí), , 上單調(diào)遞減,

當(dāng)時(shí)即時(shí),

此時(shí)上都是單調(diào)遞減的,在上是單調(diào)遞增的;

(2)(i),據(jù)題意有,又

, ,

法1: ,

當(dāng)且僅當(dāng) 時(shí)取等號.

法2: ,

當(dāng)且僅當(dāng)時(shí)取等號.

(ii)要在點(diǎn)處的切線重合,首先需要在點(diǎn)處的切線的斜率相等,

時(shí), ,則必有,即, ,

處的切線方程是:

處的切線方程是: ,

據(jù)題意則,

設(shè), ,

設(shè), 上恒成立,

上單調(diào)遞增,

, 上單調(diào)遞增,

,再設(shè), ,

, 上單調(diào)遞增, ,

恒成立,

即當(dāng)時(shí), 的值域是,

,即為所求.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A、B、C所對的邊分別是a、b、c滿足:cosAcosC+sinAsinC+cosB= ,且a,b,c成等比數(shù)列,
(1)求角B的大;
(2)若 + = ,a=2,求三角形ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列判斷正確的是(
A.a=7,b=14,A=30°,有兩解
B.a=30,b=25,A=150°,有一解
C.a=6,b=9,A=45°,有兩解
D.a=9,b=10,A=60°,無解

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;

(2)設(shè),若對任意的,存在使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】10y1(2)x02(3),求數(shù)字x,y的值及與此兩數(shù)等值的十進(jìn)制數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a<0,解關(guān)于x的不等式ax2+(1﹣a)x﹣1>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), 為常數(shù)),函數(shù)為自然對數(shù)的底).

(1)討論函數(shù)的極值點(diǎn)的個(gè)數(shù);

(2)若不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足a1= ,an= (n≥2,n∈N).
(1)試判斷數(shù)列 是否為等比數(shù)列,并說明理由;
(2)設(shè)bn= ,求數(shù)列{bn}的前n項(xiàng)和Sn;
(3)設(shè)cn=ansin ,數(shù)列{cn}的前n項(xiàng)和為Tn . 求證:對任意的n∈N* , Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》中的“兩鼠穿墻題”是我國數(shù)學(xué)的古典名題:“今有垣厚若干尺,兩鼠對穿,大鼠日一尺,小鼠也日一尺,大鼠日自倍,小鼠日自半,問何日相逢,各穿幾何?”題意是:“有兩只老鼠從墻的兩邊打洞穿墻,大老鼠第一天進(jìn)一尺,以后每天加倍;小老鼠第一天也進(jìn)一尺,以后每天減半.”如果墻足夠厚,為前天兩只老鼠打洞之和,則_________________尺.

查看答案和解析>>

同步練習(xí)冊答案