如圖所示,將一矩形花壇擴(kuò)建成一個(gè)更大的矩形花壇,要求的延長(zhǎng)線上,的延長(zhǎng)線上,且對(duì)角線點(diǎn).已知米,米。

(1)設(shè)(單位:米),要使花壇的面積大于32平方米,求的取值范圍;
(2)若(單位:米),則當(dāng)的長(zhǎng)度分別是多少時(shí),花壇的面積最大?并求出最大面積.

(Ⅰ);(Ⅱ)花壇的面積最大27平方米,此時(shí)米,米   .

解析試題分析:(Ⅰ)把表示后,再把矩形面積表示出來,解不等式可得;(Ⅱ)對(duì)(Ⅰ)中的函數(shù)解析式,以導(dǎo)數(shù)為工具,求出最大值.
試題解析:由于,則        
     4分
(1)由 得   ,
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/83/f/jlird.png" style="vertical-align:middle;" />,所以,即
從而   
長(zhǎng)的取值范圍是    8分
(2)令,則    11分
因?yàn)楫?dāng)時(shí),,所以函數(shù)上為單調(diào)遞減函數(shù),
從而當(dāng)時(shí)取得最大值,即花壇的面積最大27平方米,
此時(shí)米,米      16分
考點(diǎn):函數(shù)的應(yīng)用、導(dǎo)數(shù)的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)若,試討論的單調(diào)性;
(2)若對(duì),總使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=ln-a+x(a>0).
(Ⅰ)若,求f(x)圖像在x=1處的切線的方程;
(Ⅱ)若的極大值和極小值分別為m,n,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)
(Ⅰ)討論函數(shù)的單調(diào)性;
(Ⅱ)若,證明:時(shí),成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(Ⅰ)當(dāng)時(shí),討論函數(shù)在[上的單調(diào)性;
(Ⅱ)如果是函數(shù)的兩個(gè)零點(diǎn),為函數(shù)的導(dǎo)數(shù),證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知二次函數(shù)h(x)=ax2+bx+c(其中c<3),其導(dǎo)函數(shù)的圖象如圖,f(x)=6lnx+h(x).

①求f(x)在x=3處的切線斜率;
②若f(x)在區(qū)間(m,m+)上是單調(diào)函數(shù),求實(shí)數(shù)m的取值范圍;
③若對(duì)任意k∈[-1,1],函數(shù)y=kx(x∈(0,6])的圖象總在函數(shù)y=f(x)圖象的上方,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若內(nèi)恒成立,求實(shí)數(shù)的取值范圍.
(Ⅲ),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(Ⅰ)討論的單調(diào)性;
(Ⅱ)若恒成立,證明:當(dāng)時(shí),.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),且函數(shù)在點(diǎn)處的切線方程為.
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)設(shè)點(diǎn),當(dāng)時(shí),直線的斜率恒小于,試求實(shí)數(shù)的取值范圍;
(Ⅲ)證明:.

查看答案和解析>>

同步練習(xí)冊(cè)答案