已知二次函數(shù)h(x)=ax2+bx+c(其中c<3),其導(dǎo)函數(shù)的圖象如圖,f(x)=6lnx+h(x).

①求f(x)在x=3處的切線斜率;
②若f(x)在區(qū)間(m,m+)上是單調(diào)函數(shù),求實(shí)數(shù)m的取值范圍;
③若對任意k∈[-1,1],函數(shù)y=kx(x∈(0,6])的圖象總在函數(shù)y=f(x)圖象的上方,求c的取值范圍.

①0; ②;③

解析試題分析:①根據(jù)圖像求出一次導(dǎo)函數(shù)的解析式,那么函數(shù)的導(dǎo)函數(shù)就很容易得到了,所求的切線斜率即是其所對應(yīng)的的導(dǎo)函數(shù)值;②根據(jù)函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系求出函數(shù)的三個單調(diào)區(qū)間,使得所給的區(qū)間在任何一個單調(diào)區(qū)間內(nèi)即可求出未知數(shù)的取值范圍;③由已知條件先導(dǎo)出和有關(guān)的不等式,將放在不等式的一邊,那么就有的最小值也要大于等于不等式另一邊式子的最大值,才能保證不等式恒成立,由函數(shù)的單調(diào)性和導(dǎo)數(shù)的關(guān)系求最值即可.
試題解析:①由已知得,其圖像如圖所示過點(diǎn),
則有,解得,所以,
所以,則處的切線斜率為0;            3分
②由已知得,
,得,列表如下:

x
(0,1)
1
(1, 3)
3
(3,+∞)

+
0

0
+
..f(x)

極大值

極小值

要使f(x)在上是單調(diào)函數(shù),則區(qū)間必須完全含在任意一個單調(diào)區(qū)間內(nèi),    5分
所以有,
所以m的取值范圍為:
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)
(Ⅰ)若時(shí),求的單調(diào)區(qū)間;
(Ⅱ)時(shí),有極值,且對任意時(shí),求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),(其中m為常數(shù)).
(1) 試討論在區(qū)間上的單調(diào)性;
(2) 令函數(shù).當(dāng)時(shí),曲線上總存在相異兩點(diǎn)、,使得過點(diǎn)處的切線互相平行,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題13分)已知函數(shù)
(1)若實(shí)數(shù)求函數(shù)上的極值;
(2)記函數(shù),設(shè)函數(shù)的圖像軸交于點(diǎn),曲線點(diǎn)處的切線與兩坐標(biāo)軸所圍成圖形的面積為則當(dāng)時(shí),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,將一矩形花壇擴(kuò)建成一個更大的矩形花壇,要求的延長線上,的延長線上,且對角線點(diǎn).已知米,米。

(1)設(shè)(單位:米),要使花壇的面積大于32平方米,求的取值范圍;
(2)若(單位:米),則當(dāng)的長度分別是多少時(shí),花壇的面積最大?并求出最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(Ⅰ)若,求的極大值;
(Ⅱ)若在定義域內(nèi)單調(diào)遞減,求滿足此條件的實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù) (R),且該函數(shù)曲線處的切線與軸平行.
(Ⅰ)討論函數(shù)的單調(diào)性;
(Ⅱ)證明:當(dāng)時(shí),.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)().
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時(shí),取得極值,求函數(shù)上的最小值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)F(x )=x2+aln(x+1)
(I)若函數(shù)y=f(x)在區(qū)間[1,+∞)上是單調(diào)遞增函數(shù),求實(shí)數(shù)a的取值范圍;
(II)若函數(shù)y=f(x)有兩個極值點(diǎn)x1,x2,求證:.

查看答案和解析>>

同步練習(xí)冊答案