【題目】已知函數(shù).

1)當(dāng)時,討論極值點(diǎn)的個數(shù);

2)若a,b分別為的最大零點(diǎn)和最小零點(diǎn),當(dāng)時,證明:.

【答案】1)兩個(2)證明見解析

【解析】

1)求出導(dǎo)函數(shù),由,確定單調(diào)性后再得極值點(diǎn)個數(shù).

2)先證明時,函數(shù)沒有兩個零點(diǎn),從而,設(shè),且是兩個極值點(diǎn),得,,計算,證明,可縮小范圍,,得,從而證得命題成立.

1

,

,單調(diào)遞減,

,單調(diào)遞增,

,

當(dāng)時,,使得

,單調(diào)遞增,

單調(diào)遞減,

有兩個極值點(diǎn).

綜上:時,有兩個極值點(diǎn):

2)證明:由(1)可知:當(dāng)時,

恒成立,且的解為有限個,

所以R上單調(diào)遞增,又因為

所以有且只有一個零點(diǎn),

所以:若函數(shù)有不止一個零點(diǎn),則

當(dāng)時,由(1)可知:,

,單調(diào)遞增,

單調(diào)遞減,

因為,所以,

,,當(dāng)時,

上單調(diào)遞增,又因為為連續(xù)函數(shù),

上單調(diào)遞增,又因為為連續(xù)函數(shù),

所以:,即,

又因為,所以,,

,

所以.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足:,且an+1n=1,2…)集合M={an|}中的最小元素記為m.

1)若a1=20,寫出ma10的值:

2)若m為偶數(shù),證明:集合M的所有元素都是偶數(shù);

3)證明:當(dāng)且僅當(dāng)時,集合M是有限集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知兩定點(diǎn),點(diǎn)是平面內(nèi)的動點(diǎn),且,記的軌跡是

(1)求曲線的方程;

(2)過點(diǎn)引直線交曲線兩點(diǎn),設(shè),點(diǎn)關(guān)于軸的對稱點(diǎn)為,證明直線過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn),直線,設(shè)圓的半徑為1,圓心在.

1)若圓心也在直線上,過點(diǎn)作圓的切線,求切線的方程;

2)若圓上存在點(diǎn),使,求圓心的橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓經(jīng)過點(diǎn),離心率為, 為坐標(biāo)原點(diǎn).

I)求橢圓的方程.

II)若點(diǎn)為橢圓上一動點(diǎn),點(diǎn)與點(diǎn)的垂直平分線l交軸于點(diǎn)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,橢圓C的右焦點(diǎn)為F,過點(diǎn)F的直線l與橢圓交于A、B兩點(diǎn),直線nx=4與x軸相交于點(diǎn)E,點(diǎn)M在直線n上,且滿足BMx軸.

(1)當(dāng)直線lx軸垂直時,求直線AM的方程;

(2)證明:直線AM經(jīng)過線段EF的中點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢)過點(diǎn),且橢圓的離心率為.過橢圓左焦點(diǎn)且斜率為1的直線與橢圓交于,兩點(diǎn).

1)求橢圓的方程;

2)求線段的垂直平分線的方程;

3)求三角形的面積.為坐標(biāo)原點(diǎn))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓:過點(diǎn)和點(diǎn).

Ⅰ)求橢圓的方程;

Ⅱ)設(shè)直線與橢圓相交于不同的兩點(diǎn), ,是否存在實數(shù),使得?若存在,求出實數(shù);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,點(diǎn)的極坐標(biāo)為,直線的極坐標(biāo)方程為

(1)求直線的直角坐標(biāo)方程與曲線的普通方程;

(2)若是曲線上的動點(diǎn),為線段的中點(diǎn),求點(diǎn)到直線的距離的最大值.

查看答案和解析>>

同步練習(xí)冊答案