【題目】已知橢圓:過點(diǎn)和點(diǎn).

Ⅰ)求橢圓的方程;

Ⅱ)設(shè)直線與橢圓相交于不同的兩點(diǎn), ,是否存在實(shí)數(shù),使得?若存在,求出實(shí)數(shù);若不存在,請(qǐng)說明理由.

【答案】12不存在

【解析】試題分析: 由已知求得,把點(diǎn)的坐標(biāo)代入橢圓方程求得的值,進(jìn)而得到橢圓的方程; 假設(shè)存在實(shí)數(shù)滿足題設(shè),聯(lián)立直線方程與橢圓方程,由判別式大于求得的范圍,再由根與系數(shù)的關(guān)系求得的中點(diǎn)的坐標(biāo),進(jìn)一步求得,結(jié)合,可得,由斜率的關(guān)系列式求得的值,檢驗(yàn)即可得到結(jié)論

解析:Ⅰ)橢圓:過點(diǎn)和點(diǎn),

所以,,解得,

所以橢圓:;

Ⅱ)假設(shè)存在實(shí)數(shù)滿足題設(shè),

,,

因?yàn)橹本與橢圓有兩個(gè)交點(diǎn),

所以,,

設(shè)的中點(diǎn)為,分別為點(diǎn)的橫坐標(biāo),,

從而,

所以,

因?yàn)?/span>,

所以,

所以,,

所以,,矛盾,

因此,不存在這樣的實(shí)數(shù),使得.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)在點(diǎn)處的切線方程為.

(1)求的值;

(2)已知,當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍;

(3)對(duì)于在中的任意一個(gè)常數(shù),是否存在正數(shù),使得?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(理)已知在平面直角坐標(biāo)系中,直線的參數(shù)方程是為參數(shù)),以原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo),曲線的極坐標(biāo)方程.

(1)判斷直線與曲線的位置關(guān)系;

(2)設(shè)為曲線上任意一點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一種游戲畫板,要求參與者用六種顏色給畫板涂色,這六種顏色分別為紅色、黃色1、黃色2、黃色3、金色1、金色2,其中黃色1、黃色2、黃色3是三種不同的顏色,金色1、金色2是兩種不同的顏色,要求紅色不在兩端,黃色1、黃色2、黃色3有且僅有兩種相鄰,則不同的涂色方案有( 。

A.120種B.240種C.144種D.288種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)log4(4x1)kx(k∈R)是偶函數(shù).

(1)k的值;

(2)設(shè)g(x)log4,若函數(shù)f(x)g(x)的圖象有且只有一個(gè)公共點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某熱帶風(fēng)暴中心B位于海港城市A東偏南30°的方向,與A市相距400km.該熱帶風(fēng)暴中心B的速度向正北方向移動(dòng),影響范圍的半徑是350km.問:從此時(shí)起,經(jīng)多長時(shí)間后A市將受熱帶風(fēng)暴影響,大約受影響多長時(shí)間?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為邊長為2的菱形,,,面,點(diǎn)為棱的中點(diǎn).

(1)在棱上是否存在一點(diǎn),使得,并說明理由;

(2)當(dāng)二面角的余弦值為時(shí),求直線與平面所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(1)若有零點(diǎn),求的取值范圍;

2)討論的根的情況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國高鐵的快速發(fā)展給群眾出行帶來巨大便利,極大促進(jìn)了區(qū)域經(jīng)濟(jì)社會(huì)發(fā)展.已知某條高鐵線路通車后,發(fā)車時(shí)間間隔(單位:分鐘)滿足,經(jīng)測(cè)算,高鐵的載客量與發(fā)車時(shí)間間隔相關(guān):當(dāng)時(shí)高鐵為滿載狀態(tài),載客量為人;當(dāng)時(shí),載客量會(huì)在滿載基礎(chǔ)上減少,減少的人數(shù)與成正比,且發(fā)車時(shí)間間隔為分鐘時(shí)的載客量為.記發(fā)車間隔為分鐘時(shí),高鐵載客量為.

的表達(dá)式;

若該線路發(fā)車時(shí)間間隔為分鐘時(shí)的凈收益(元),當(dāng)發(fā)車時(shí)間間隔為多少時(shí),單位時(shí)間的凈收益最大?

查看答案和解析>>

同步練習(xí)冊(cè)答案