【題目】已知函數(shù)f(x)=log4(4x+1)+kx(k∈R)是偶函數(shù).
(1)求k的值;
(2)設(shè)g(x)=log4,若函數(shù)f(x)與g(x)的圖象有且只有一個(gè)公共點(diǎn),求實(shí)數(shù)a的取值范圍.
【答案】(1)k=-.(2){-3}∪(1,+∞).
【解析】
(1)由函數(shù)f(x)是偶函數(shù),可知f(x)=f(-x),
∴l(xiāng)og4(4x+1)+kx=log4(4-x+1)-kx.
log4=-2kx,即x=-2kx對(duì)一切x∈R恒成立,∴k=-.
(2)函數(shù)f(x)與g(x)的圖象有且只有一個(gè)公共點(diǎn),即方程log4(4x+1)-x=log4有且只有一個(gè)實(shí)根,化簡(jiǎn)得方程2x+=a·2x-a有且只有一個(gè)實(shí)根.令t=2x>0,則方程(a-1)t2-at-1=0有且只有一個(gè)正根.
①a=1t=-,不合題意;②a≠1時(shí),Δ=0a=或-3.若a=t=-2,不合題意,若a=-3t=;③a≠1時(shí),Δ>0,一個(gè)正根與一個(gè)負(fù)根,即<0a>1.
綜上,實(shí)數(shù)a的取值范圍是{-3}∪(1,+∞).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)().
(1)當(dāng)時(shí),求函數(shù)在上的最大值和最小值;
(2)當(dāng)時(shí),是否存在正實(shí)數(shù),當(dāng)(是自然對(duì)數(shù)底數(shù))時(shí),函數(shù)的最小值是3,若存在,求出的值;若不存在,說明理由;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,,,為的中點(diǎn).
(1)證明:平面;
(2)若點(diǎn)在棱上,且,求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中, , , 是的中點(diǎn),以為折痕將向上折起, 變?yōu)?/span>,且平面平面.
(Ⅰ)求證: ;
(Ⅱ)求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:過點(diǎn)和點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線與橢圓相交于不同的兩點(diǎn), ,是否存在實(shí)數(shù),使得?若存在,求出實(shí)數(shù);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在上的奇函數(shù)在區(qū)間上是減函數(shù),且滿足.令,則的大小關(guān)系為( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本大題滿分12分)
隨著互聯(lián)網(wǎng)的快速發(fā)展,基于互聯(lián)網(wǎng)的共享單車應(yīng)運(yùn)而生,某市場(chǎng)研究人員為了了解共享單車運(yùn)營公司的經(jīng)營狀況,對(duì)該公司最近六個(gè)月的市場(chǎng)占有率進(jìn)行了統(tǒng)計(jì),并繪制了相應(yīng)的折線圖:
(Ⅰ)由折線圖可以看出,可用線性回歸模型擬合月度市場(chǎng)占有率與月份代碼之間的關(guān)系,求關(guān)于的線性回歸方程,并預(yù)測(cè)公司2017年4月的市場(chǎng)占有率;
(Ⅱ)為進(jìn)一步擴(kuò)大市場(chǎng),公司擬再采購一批單車,現(xiàn)有采購成本分別為元/輛和1200元/輛的、兩款車型可供選擇,按規(guī)定每輛單車最多使用4年,但由于多種原因(如騎行頻率等)會(huì)導(dǎo)致單車使用壽命各不相同,考慮到公司運(yùn)營的經(jīng)濟(jì)效益,該公司決定先對(duì)這兩款車型的單車各100輛進(jìn)行科學(xué)模擬測(cè)試,得到兩款單車使用壽命的頻數(shù)表如下:
經(jīng)測(cè)算,平均每輛單車每年可以帶來收入500元,不考慮除采購成本之外的其他成本,假設(shè)每輛單車的使用壽命都是整數(shù)年,且以頻率作為每輛單車使用壽命的概率,如果你是公司的負(fù)責(zé)人,以每輛單車產(chǎn)生利潤(rùn)的期望值為決策依據(jù),你會(huì)選擇采購哪款車型?
參考公式:回歸直線方程為,其中,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)a,b,c表示三條不同的直線,M表示平面,給出下列四個(gè)命題:其中正確命題的個(gè)數(shù)有( )
①若a//M,b//M,則a//b;
②若bM,a//b,則a//M;
③若a⊥c,b⊥c,則a//b;
④若a//c,b//c,則a//b.
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com