用數(shù)學(xué)歸納法證明1+2+3+ +n2,則當(dāng)n=k+1時(shí)左端應(yīng)在n=k的基礎(chǔ)上加上(  )
A.k2+1
B.(k+1)2
C.
D.(k2+1)+(k2+2)+ +(k+1)2
D

試題分析:當(dāng)時(shí),,當(dāng)時(shí),,所以時(shí)左端應(yīng)在的基礎(chǔ)上加上.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在數(shù)列中,,且成等差數(shù)列,成等比數(shù)列.
(1)求
(2)根據(jù)計(jì)算結(jié)果,猜想的通項(xiàng)公式,并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(8分)已知 是正實(shí)數(shù), 求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=(1+x)n(x>-1,n∈N*)在點(diǎn)(0,1)處的切線(xiàn)L為y=g(x)
(Ⅰ)求切線(xiàn)L并判斷函數(shù)f(x)在x∈(-1,+∞)上的單調(diào)性;
(Ⅱ)求證:f(x)≥g(x)對(duì)任意的x∈(-1,+∞)都成立;
(Ⅲ)求證:已知m,n∈N*,Sm=1m+2m+…+nm,求證:nm+1<(m+1)Sm

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

一個(gè)建設(shè)集團(tuán)公司共有3n(n≥2,n∈N*)個(gè)施工隊(duì),編號(hào)分別為1,2,3,…3n.現(xiàn)有一項(xiàng)建設(shè)工程,因?yàn)楣と藬?shù)量和工作效率的差異,經(jīng)測(cè)算:如果第i(1≤i≤3n)個(gè)施工隊(duì)每天完成的工作量都相等,則它需要i天才能獨(dú)立完成此項(xiàng)工程.
(1)求證第n個(gè)施工隊(duì)用m(1≤m<n,m∈N*)天完成的工作量不可能大于第n+k(1≤k≤2n)個(gè)施工隊(duì)用m+k天完成的工作量;
(2)如果該集團(tuán)公司決定由編號(hào)為n+1,n+2,…,3n共2n個(gè)施工隊(duì)共同完成,求證它們最多不超過(guò)兩天即可完成此項(xiàng)工作.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

圖1,2,3,4分別包含1,5,13和25個(gè)互不重疊的單位正方形,按同樣的方式構(gòu)造圖形,則第個(gè)圖包含______個(gè)互不重疊的單位正方形。

圖1      圖2         圖3              圖4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

用數(shù)學(xué)歸納法證明)時(shí),從“n=”到“n=”的證明,左邊需增添的代數(shù)式是___________. 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

用數(shù)學(xué)歸納法證明“n3+(n+1)3+(n+2)3,(n∈N)能被9整除”,要利
用歸納法假設(shè)證nk+1時(shí)的情況,只需展開(kāi)(  ).
A.(k+3)3B.(k+2)3
C.(k+1)3D.(k+1)3+(k+2)3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

證明下列不等式:
(1)若x,yz∈R,a,bc∈R+,則z2≥2(xy+yz+zx)
(2)若x,yz∈R+,且x+y+z=xyz,則≥2()

查看答案和解析>>

同步練習(xí)冊(cè)答案