【題目】已知函數(shù),且存在不同的實(shí)數(shù)x1x2,x3,使得fx1=fx2=fx3),則x1x2x3的取值范圍是( 。

A. B. C. D.

【答案】A

【解析】

作出yfx)的函數(shù)圖象,設(shè)x1x2x3,fx1)=fx2)=fx3)=t,1<t<2,求得x1x2,x3,構(gòu)造函數(shù)gt)=(t﹣1)(2+log2t),1<t<2,求得導(dǎo)數(shù),判斷單調(diào)性,即可得到所求范圍.

函數(shù)的圖象如圖所示:

設(shè)x1x2x3,

又當(dāng)x[2,+∞)時(shí),fx)=2x﹣2是增函數(shù),

當(dāng)x=3時(shí),fx)=2,

設(shè)fx1)=fx2)=fx3)=t,1<t<2,

即有﹣x12+2x1+1=﹣x22+2x2+1=t,

x1x2x3=(1)(1)(2+log2t

=(t﹣1)(2+log2t),

gt)=(t﹣1)(2+log2t),1<t<2,

可得g′(t)=2+log2t0,即gt)在(1,2)遞增,又g1)=0,g2)=3,

可得gt)的范圍是(0,3).

故選:A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)已知處的切線與軸垂直,若方程有三個(gè)實(shí)數(shù)解、、),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種大型醫(yī)療檢查機(jī)器生產(chǎn)商,對(duì)一次性購(gòu)買2臺(tái)機(jī)器的客戶,推出兩種超過質(zhì)保期后兩年內(nèi)的延保維修優(yōu)惠方案:方案一:交納延保金7000元,在延保的兩年內(nèi)可免費(fèi)維修2次,超過2次每次收取維修費(fèi)2000元;方案二:交納延保金10000元,在延保的兩年內(nèi)可免費(fèi)維修4次,超過4次每次收取維修費(fèi)1000元.某醫(yī)院準(zhǔn)備一次性購(gòu)買2臺(tái)這種機(jī)器,F(xiàn)需決策在購(gòu)買機(jī)器時(shí)應(yīng)購(gòu)買哪種延保方案,為此搜集并整理了50臺(tái)這種機(jī)器超過質(zhì)保期后延保兩年內(nèi)維修的次數(shù),得下表:

維修次數(shù)

0

1

2

3

臺(tái)數(shù)

5

10

20

15

以這50臺(tái)機(jī)器維修次數(shù)的頻率代替1臺(tái)機(jī)器維修次數(shù)發(fā)生的概率,記X表示這2臺(tái)機(jī)器超過質(zhì)保期后延保的兩年內(nèi)共需維修的次數(shù)。

(1)求X的分布列;

(2)以所需延保金及維修費(fèi)用的期望值為決策依據(jù),醫(yī)院選擇哪種延保方案更合算?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,

(1)求 的值;

(2)試猜想的表達(dá)式(用一個(gè)組合數(shù)表示),并證明你的猜想.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,等腰梯形ABCD中,,,OBE中點(diǎn),FBC中點(diǎn).將沿BE折起到的位置,如圖2.

1)證明:平面;

2)若平面平面BCDE,求點(diǎn)F到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一改形塔幾何體由若千個(gè)正方體構(gòu)成,構(gòu)成方式如圖所示,上層正方體下底面的四個(gè)頂點(diǎn)是下層正方體上底面各邊的中點(diǎn).已知最底層正方體的棱長(zhǎng)為8,如果改形塔的最上層正方體的邊長(zhǎng)小于1,那么該塔形中正方體的個(gè)數(shù)至少是(

A.8B.7C.6D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]

在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù),),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(Ⅰ)若,求直線的普通方程及曲線的直角坐標(biāo)方程;

(Ⅱ)若直線與曲線有兩個(gè)不同的交點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,四邊形是直角梯形, , 底面 , , 的中點(diǎn).

(1)求證:平面平面;

(2)若二面角的余弦值為,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的焦點(diǎn)坐標(biāo)為,,過垂直于長(zhǎng)軸的直線交橢圓于、兩點(diǎn),且.

(Ⅰ)求橢圓的方程;

(Ⅱ)過的直線與橢圓交于不同的兩點(diǎn)、,則的內(nèi)切圓的面積是否存在最大值?若存在求出這個(gè)最大值及此時(shí)的直線方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案