【題目】有一改形塔幾何體由若千個正方體構成,構成方式如圖所示,上層正方體下底面的四個頂點是下層正方體上底面各邊的中點.已知最底層正方體的棱長為8,如果改形塔的最上層正方體的邊長小于1,那么該塔形中正方體的個數(shù)至少是(

A.8B.7C.6D.4

【答案】A

【解析】

則從下往上第二層正方體的棱長為:,從下往上第三層正方體的棱長為:,從下往上第四層正方體的棱長為:,以此類推,能求出改形塔的最上層正方體的邊長小于1時該塔形中正方體的個數(shù)的最小值的求法.

最底層正方體的棱長為8,

則從下往上第二層正方體的棱長為:,

從下往上第三層正方體的棱長為:

從下往上第四層正方體的棱長為:,

從下往上第五層正方體的棱長為:

從下往上第六層正方體的棱長為:,

從下往上第七層正方體的棱長為:

從下往上第八層正方體的棱長為:,

∴改形塔的最上層正方體的邊長小于1,那么該塔形中正方體的個數(shù)至少是8.

故選:A.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,直線的參數(shù)方程為為參數(shù),為直線的傾斜角),以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,曲線的極坐標方程為.

1)寫出曲線的直角坐標方程,并求時直線的普通方程;

2)直線和曲線交于、兩點,點的直角坐標為,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)fx,若關于x的方程f2x)﹣afx+aa20有四個不等的實數(shù)根,則a的取值范圍是(

A.B.(﹣,﹣1)∪[1,+∞

C.(﹣,﹣1)∪{1}D.(﹣10)∪{1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】是定義在R上的兩個周期函數(shù),的周期為4,的周期為2,且是奇函數(shù).時,,,其中k>0.若在區(qū)間(0,9]上,關于x的方程8個不同的實數(shù)根,則k的取值范圍是_____.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),且存在不同的實數(shù)x1,x2,x3,使得fx1=fx2=fx3),則x1x2x3的取值范圍是(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設橢圓,直線經(jīng)過點,直線經(jīng)過點,直線直線,且直線分別與橢圓相交于兩點和兩點.

()分別為橢圓的左、右焦點,且直線軸,求四邊形的面積;

()若直線的斜率存在且不為0,四邊形為平行四邊形,求證:;

()()的條件下,判斷四邊形能否為矩形,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在國家“大眾創(chuàng)業(yè),萬眾創(chuàng)新”戰(zhàn)略下,某企業(yè)決定加大對某種產(chǎn)品的研發(fā)投入.為了對新研發(fā)的產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格試銷,得到一組檢測數(shù)據(jù)如表所示:

試銷價格(元)

產(chǎn)品銷量 (件)

已知變量且有線性負相關關系,現(xiàn)有甲、乙、丙三位同學通過計算求得回歸直線方程分別為:甲;丙,其中有且僅有一位同學的計算結果是正確的.

1)試判斷誰的計算結果正確?

2)若由線性回歸方程得到的估計數(shù)據(jù)與檢測數(shù)據(jù)的誤差不超過,則稱該檢測數(shù)據(jù)是“理想數(shù)據(jù)”,現(xiàn)從檢測數(shù)據(jù)中隨機抽取個,求“理想數(shù)據(jù)”的個數(shù)的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)、、都有,滿足的實數(shù)有且只有3個,給出下述四個結論:①滿足題目條件的實數(shù)有且只有2個:②滿足題目條件的實數(shù)有且只有2個;③上單調遞增;④的取值范圍是.其中所有正確的個數(shù)是(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程選講

在平面直角坐標系中,以原點為極點,以軸非負半軸為極軸建立極坐標系, 已知曲線的極坐標方程為,直線的極坐標方程為

(Ⅰ)寫出曲線和直線的直角坐標方程;

(Ⅱ)設直線過點與曲線交于不同兩點,的中點為,的交點為,求

查看答案和解析>>

同步練習冊答案