某中學田徑隊共有42名隊員,其中男生28名、女生14名,采用分層抽樣的方法選出6人參加一個座談會.
(Ⅰ)求運動員甲被抽到的概率以及選出的男、女運動員的人數(shù);
(Ⅱ)若從參加會議的運動員中選出2名運動員清掃會場衛(wèi)生,用列舉法求恰好有1名女隊員的概率.
考點:古典概型及其概率計算公式
專題:計算題,概率與統(tǒng)計
分析:(Ⅰ)求出每個個體被抽到的概率,即為運動員甲被抽到的概率,再用男、女運動員的人數(shù)乘以此概率,即得所求;
(Ⅱ)利用列舉法確定基本事件的個數(shù),再用公式求出概率.
解答: 解:(Ⅰ)運動員甲被抽到的概率
6
42
=
1
7
;
男運動員的人數(shù)28×
1
7
=4;女運動員的人數(shù)14×
1
7
=2;
(Ⅱ)男運動員編號1,2,3,4,女運動員編號5,6,則共有基本事件數(shù)為
C
2
6
=15,
其中恰好有1名女隊員的事件為(1,5),(2,5),(3,5),(4,5),(1,6),(2,6),(3,6),(4,6),共有8個,
所以恰好有1名女隊員的概率為
8
15
點評:本題主要考查分層抽樣的定義和方法,考查古典概型及其概率計算公式,用每層的個體數(shù)乘以每個個體被抽到的概率等于該層應抽取的個體數(shù),屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

等差數(shù)列{an}中,a4+a5+a6=36,則a1+a9=(  )
A、12B、18C、24D、36

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的首項a1=5,an+1=2an+1,n∈N*
(1)證明:數(shù)列{an+1}是等比數(shù)列;
(2)求{an}的通項公式以及前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某地區(qū)有小學18所,中學12所,大學6所,現(xiàn)采用分層抽樣的方法從這些學校中抽取6所學校對學生的視力進行調查
(1)求應從小學、中學、大學中分別抽取的學校數(shù)目;
(2)若從抽取的6所學校中隨機的抽取2所學校做進一步的數(shù)據(jù)分析,
  (i)列出所有可能的抽取結果;
  (ii)求抽取的2所學校均為小學的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果函數(shù)f(x)=ax2+2x-3
(1)當a=1時,求f(x)在[-2,2]之間的取值范圍.
(2)若f(x)在區(qū)間(-∞,4)上單調遞增,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某中學的高二(1)班男同學有45名,女同學有15名,老師按照分層抽樣的方法組建了一個4人的課外興趣小組.
(Ⅰ)求某同學被抽到的概率及課外興趣小組中男、女同學的人數(shù);
(Ⅱ)經過一個月的學習、討論,這個興趣小組決定選出兩名同學做某項實驗,方法是先從小組里選出1名同學做實驗,該同學做完后,再從小組內剩下的同學中選一名同學做實驗,求選出的兩名同學中恰有一名女同學的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和Sn滿足:Sn=
1
2
(1-an)

(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設bn=nSn,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的通項公式an=
1
(n+1)2
(n∈N*),記f(n)=(1-a1)(1-a2)…(1-an).
(1)試通過計算f(1),f(2),f(3)的值,推測出f(n)的值;
(2)試用數(shù)學歸納法證明你的推測.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=|x-1|,方程[f(x)]2-af(x)+1=0有四個不同的實數(shù)解,則實數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習冊答案