已知函數(shù)f(x)=e|x|,m>1,對(duì)任意的x∈(1,m),都有f(x-2)≤ex,則最大的正整數(shù)m為
 
考點(diǎn):指數(shù)函數(shù)的圖像與性質(zhì)
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:在同一坐標(biāo)系中作出y1=f(x-2)和y2=ex的圖象,結(jié)合圖形分析得出當(dāng)x=4時(shí),y1=e2<y2=4e,當(dāng)x=5時(shí),y1=e3>y2=5e,從而得出結(jié)論.
解答: 解:∵f(x)=e|x|,
∴f(x-2)=)=e|x-2|
在同一坐標(biāo)系中作出y1=e|x-2|和y2=ex的圖象,如圖所示:

由圖知:當(dāng)x=1時(shí),y1=y2
當(dāng)x=4時(shí),y1=e2<y2=4e,
當(dāng)x=5時(shí),y1=e3>y2=5e,
∴m<5;
∴最大的正整數(shù)m為4;
故答案為:4.
點(diǎn)評(píng):本題考查了指數(shù)函數(shù)的圖象與性質(zhì)以及數(shù)形結(jié)合的思想,在同一坐標(biāo)系中畫(huà)出兩個(gè)函數(shù)的圖象是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A,B,C所對(duì)的邊是a,b,c,且a2=b2+c2-bc.
(1)求角A;
(2)若a=
3
,S為△ABC的面積,求S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知兩平面的法向量分別為
m
=(1,1,0),
n
=(0,1,1),則兩平面所成的二面角大小為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若二項(xiàng)式(x+
1
2x
)6
的展開(kāi)式的常數(shù)項(xiàng)為T(mén),則
T
0
2xdx
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,∠BAC=120°,AB=
3
,AC=1,D是BC上一點(diǎn),DC=2BD,則
AD
BC
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sin(x+
 π 
4
)=
3
5
,sin(x-
 π 
4
)=
4
5
,則tanx=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)光線從點(diǎn)A(-2,2)出發(fā),經(jīng)過(guò)x軸反射后經(jīng)過(guò)點(diǎn)B(0,1),則光線與x軸的交點(diǎn)坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖是一個(gè)幾何體的三視圖,若它的體積為2,則a+b的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

把邊長(zhǎng)為
2
的正方形ABCD沿對(duì)角線BD折起,連結(jié)AC,得到三棱錐C-ABD,其正視圖、俯視圖均為全等的等腰直角三角形(如圖所示),則其側(cè)視圖的面積為(  )
A、
3
2
B、
1
2
C、1
D、
2
2

查看答案和解析>>

同步練習(xí)冊(cè)答案