【題目】如圖,在四棱錐P﹣ABCD中,四邊形ABCD為平行四邊形,AC,BD相交于點(diǎn)O,點(diǎn)E為PC的中點(diǎn),OP=OC,PA⊥PD.求證:
(1)直線PA∥平面BDE;
(2)平面BDE⊥平面PCD.
【答案】
(1)證明:連結(jié)OE,因?yàn)镺為平行四邊形ABCD對(duì)角線的交點(diǎn),所以O(shè)為AC中點(diǎn).
又因?yàn)镋為PC的中點(diǎn),
所以O(shè)E∥PA.
又因?yàn)镺E平面BDE,PA平面BDE,
所以直線PA∥平面BDE
(2)證明:因?yàn)镺E∥PA,PA⊥PD,所以O(shè)E⊥PD.
因?yàn)镺P=OC,E為PC的中點(diǎn),所以O(shè)E⊥PC.
又因?yàn)镻D平面PCD,PC平面PCD,PC∩PD=P,
所以O(shè)E⊥平面PCD.
又因?yàn)镺E平面BDE,所以平面BDE⊥平面PCD..
【解析】(1)連結(jié)OE,說明OE∥PA.然后證明PA∥平面BDE.(2)證明OE⊥PD.OE⊥PC.推出OE⊥平面PCD.然后證明平面BDE⊥平面PCD.
【考點(diǎn)精析】本題主要考查了直線與平面平行的判定和平面與平面垂直的判定的相關(guān)知識(shí)點(diǎn),需要掌握平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行;一個(gè)平面過另一個(gè)平面的垂線,則這兩個(gè)平面垂直才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為調(diào)查乘客的候車情況,公交公司在某為臺(tái)的名候車乘客中隨機(jī)抽取人,將他們的候車時(shí)間(單位:分鐘)作為樣本分成組,如下表所示:
組別 | 候車時(shí)間 | 人數(shù) |
一 | ||
二 | ||
三 | ||
四 | ||
五 |
(1)求這名乘客的平均候車時(shí)間;
(2)估計(jì)這名候車乘客中候車時(shí)間少于分鐘的人數(shù);
(3)若從上表第三、四組的人中隨機(jī)抽取人作進(jìn)一步的問卷調(diào)查,求抽到的兩人恰好來自不同組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某小區(qū)內(nèi)有兩條互相垂直的道路與,分別以、所在直線為軸、軸建立如圖所示的平面直角坐標(biāo)系,其第一象限有一塊空地,其邊界是函數(shù)的圖象,前一段曲線是函數(shù)圖象的一部分,后一段是一條線段.測得到的距離為米,到的距離為米,長為米.現(xiàn)要在此地建一個(gè)社區(qū)活動(dòng)中心,平面圖為梯形(其中點(diǎn)在曲線上,點(diǎn)在線段上,且、為兩底邊).
(1)求函數(shù)的解析式;
(2)當(dāng)梯形的高為多少米時(shí),該社區(qū)活動(dòng)中心的占地面積最大,并求出最大面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在銳角中,已知,,若點(diǎn)是線段上一點(diǎn)(不含端點(diǎn)),過作于,于.
(1)若外接圓的直徑長為,求的值;
(2)求的最小值
(3)問點(diǎn)在何處時(shí),的面積最大?最大值為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校將從4名男生和4名女生中選出4人分別擔(dān)任辯論賽中的一、二、三、四辯手,其中男生甲不適合擔(dān)任一辯手,女生乙不適合擔(dān)任四辯手.現(xiàn)要求:如果男生甲入選,則女生乙必須入選.那么不同的組隊(duì)形式有_________種.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)若曲線在點(diǎn)處的切線為, 與軸的交點(diǎn)坐標(biāo)為,求的值;
(2)討論的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ln(a x)+bx在點(diǎn)(1,f(1))處的切線是y=0;
(I)求函數(shù)f(x)的極值;
(II)當(dāng)恒成立時(shí),求實(shí)數(shù)m的取值范圍(e為自然對(duì)數(shù)的底數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將參加數(shù)學(xué)競賽決賽的500名同學(xué)編號(hào)為:001,002,…,500,采用系統(tǒng)抽樣的方法抽取一個(gè)容量為50的樣本,且隨機(jī)抽的號(hào)碼為003,這500名學(xué)生分別在三個(gè)考點(diǎn)考試,從001到200在第一考點(diǎn),從201到355在第二考點(diǎn),從356到500在第三考點(diǎn),則第二考點(diǎn)被抽中的人數(shù)為( )
A.14
B.15
C.16
D.17
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長度單位.若直線的參數(shù)方程為為參數(shù)),曲線的極坐標(biāo)方程為.
(I)求直線的普通方程與曲線的直角坐標(biāo)方程;
(II)設(shè)直線與曲線相交于兩點(diǎn),若點(diǎn)的直角坐標(biāo)為,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com