【題目】將參加數(shù)學競賽決賽的500名同學編號為:001,002,…,500,采用系統(tǒng)抽樣的方法抽取一個容量為50的樣本,且隨機抽的號碼為003,這500名學生分別在三個考點考試,從001到200在第一考點,從201到355在第二考點,從356到500在第三考點,則第二考點被抽中的人數(shù)為(
A.14
B.15
C.16
D.17

【答案】C
【解析】解:系統(tǒng)抽樣的分段間隔為 =10, 在隨機抽樣中,首次抽到003號,以后每隔10個號抽到一個人,
則被抽中的人數(shù)構成以3為首項,10為公差的等差數(shù)列,
故可分別求出在001到200中有20人,在201至355號中共有16人.
故選:C.
【考點精析】本題主要考查了系統(tǒng)抽樣方法的相關知識點,需要掌握把總體的單位進行排序,再計算出抽樣距離,然后按照這一固定的抽樣距離抽取樣本;第一個樣本采用簡單隨機抽樣的辦法抽取才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知正項等比數(shù)列的前項和為,首項,且,正項數(shù)列滿足.

(1)求數(shù)列,的通項公式;

(2)記,是否存在正整數(shù),使得對任意正整數(shù),恒成立?若存在,求正整數(shù)的最小值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,四邊形ABCD為平行四邊形,AC,BD相交于點O,點E為PC的中點,OP=OC,PA⊥PD.求證:
(1)直線PA∥平面BDE;
(2)平面BDE⊥平面PCD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校在本校任選了一個班級,對全班50名學生進行了作業(yè)量的調查,根據調查結果統(tǒng)計后,得到如下的列聯(lián)表,已知在這50人中隨機抽取2人,這2人都“認為作業(yè)量大”的概率為.

認為作業(yè)量大

認為作業(yè)量不大

合計

男生

18

女生

17

合計

50

(Ⅰ)請完成上面的列聯(lián)表;

(Ⅱ)根據列聯(lián)表的數(shù)據,能否有的把握認為“認為作業(yè)量大”與“性別”有關?

(Ⅲ)若視頻率為概率,在全校隨機抽取4人,其中“認為作業(yè)量大”的人數(shù)記為,求的分布列及數(shù)學期望.

附表:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

附:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊分別為a,bc,已知2bcosC=acosC+ccosA.

(1)求角C的大;

(2)若b=2,c=,求a及△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)的圖象在處的切線過點,求的值;

(2)當時,函數(shù)上沒有零點,求實數(shù)的取值范圍;

(3)當時,存在實數(shù)使得,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線的參數(shù)方程為為參數(shù)),,以原點為極點,軸正半軸為極軸建立極坐標系,圓極坐標方程為.

(1)若直線與圓相切,求的值;

(2)已知直線與圓交于兩點,記點、相應的參數(shù)分別為,,當時,求的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】執(zhí)行如圖的程序框圖,當n≥2,n∈Z時,fn(x)表示fn1(x)的導函數(shù),若輸入函數(shù)f1(x)=sinx﹣cosx,則輸出的函數(shù)fn(x)可化為(
A. sin(x+
B. sin(x﹣ )??
C.﹣ sin(x+
D.﹣ sin(x﹣

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】空氣質量指數(shù)(Air Quality Index,簡稱AQI)是定量描述空氣質量狀況的質量狀況的指數(shù),空氣質量按照AQI大小分為六級,0~50為優(yōu);51~100為良101﹣150為輕度污染;151﹣200為中度污染;201~300為重度污染;>300為嚴重污染. 一環(huán)保人士記錄去年某地某月10天的AQI的莖葉圖如圖.
(Ⅰ)利用該樣本估計該地本月空氣質量優(yōu)良(AQI≤100)的天數(shù);(按這個月總共30天)
(Ⅱ)將頻率視為概率,從本月中隨機抽取3天,記空氣質量優(yōu)良的天數(shù)為ξ,求ξ的概率分布列和數(shù)學期望.

查看答案和解析>>

同步練習冊答案