【題目】已知橢圓的左、右焦點分別為、,離心率,點在橢圓上.

(1)求橢圓的方程;

(2)設過點且不與坐標軸垂直的直線交橢圓兩點,線段的垂直平分線與軸交于點,求點的橫坐標的取值范圍;

(3)在第(2)問的條件下,求面積的最大值.

【答案】(1);(2);(3).

【解析】試題分析:

(1)由題意求得,則橢圓方程為.

(2)將直線方程與橢圓方程聯(lián)立,整理可得 ,則的取值范圍為.

(3)面積公式: ,求導討論可得面積的最大值為.

試題解析:(1)在且橢圓上, ,

, ,

, 橢圓的方程為.

(2)設直線的方程為,

代入,整理得.

直線過橢圓的右焦點, 方程有兩個不等實根.

, 中點,

, , ,

垂直平分線的方程為.

,得 .

, . 的取值范圍為.

(3),

,

,可得.

所以.

,所以.

所以的面積為.

,則.

可知在區(qū)間單調(diào)遞增,在區(qū)間單調(diào)遞減.

所以,當時, 有最大值.

所以,當時, 的面積有最大值.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知甲、乙、丙、丁、戊、己等6人.(以下問題用數(shù)字作答)

(1)邀請這6人去參加一項活動,必須有人去,去幾人自行決定,共有多少種不同的情形?

(2)這6人同時加入6項不同的活動,每項活動限1人,其中甲不參加第一項活動,乙不參加第三項活動,共有多少種不同的安排方法?

(3)將這6人作為輔導員安排到3項不同的活動中,每項活動至少安排1名輔導員;求丁、戊、己恰好被安排在同一項活動中的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】候鳥每年都要隨季節(jié)的變化而進行大規(guī)模地遷徙,研究某種鳥類的專家發(fā)現(xiàn),該種鳥類的飛行速度v(單位:m/s)與其耗氧量Q之間的關系為:v=a+blog3 (其中a,b是實數(shù)).據(jù)統(tǒng)計,該種鳥類在靜止的時候其耗氧量為30個單位,而其耗氧量為90個單位時,其飛行速度為1 m/s.

(1)求出a,b的值;

(2)若這種鳥類為趕路程,飛行的速度不能低于2 m/s,則其耗氧量至少要多少個單位?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,曲線,曲線為參數(shù)), 以坐標原點為極點, 軸的正半軸為極軸建立極坐標系.

1)求曲線的極坐標方程;

2)若射線分別交兩點, 求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-5:不等式選講

已知函數(shù).

(1)當時,解不等式;

(2)若,的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市統(tǒng)計局就2015年畢業(yè)大學生的月收入情況調(diào)查了10000人,并根據(jù)所得數(shù)據(jù)畫出樣本的頻率分布直方圖所示,每個分組包括左端點,不包括右端點,如第一組表示.

(1)求畢業(yè)大學生月收入在的頻率;

(2)根據(jù)頻率分布直方圖算出樣本數(shù)據(jù)的中位數(shù);

(3)為了分析大學生的收入與所學專業(yè)、性別等方面的關系,必須按月收入再從這10000人中按分層抽樣方法抽出100人作進一步分析,則月收入在的這段應抽取多少人?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù).

I)求證:當時,不等式成立;

II)關于的不等式上恒成立,求實數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓:的兩個焦點分別為,且橢圓經(jīng)過點.

(1)求橢圓的離心率;

(2)過點的直線與橢圓相交于兩點,且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線C:y2=2px(p>0)的焦點為F(1,0),拋物線E:x2=2py的焦點為M.

(1)若過點M的直線l與拋物線C有且只有一個交點,求直線l的方程;

(2)若直線MF與拋物線C交于A,B兩點,求△OAB的面積.

查看答案和解析>>

同步練習冊答案