【題目】已知函數(shù) .
(1)求函數(shù)f(x)的最小正周期和單調減區(qū)間;
(2)已知△ABC的三個內(nèi)角A,B,C的對邊分別為a,b,c,其中a=7,若銳角A滿足 ,且 ,求△ABC的面積.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)是定義在R上的奇函數(shù).
(1)判斷并證明在上的單調性.
(2)若對任意實數(shù)t,不等式恒成立,求實數(shù)k的取值范圍
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設圓的圓心為,直線過點且與軸不重合,交圓于兩點,過作的平行線交于點.
(1)證明:為定值,并寫出點的軌跡方程;
(2)設點的軌跡為曲線,直線交于兩點,為坐標原點,求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)對一切實數(shù)都有 成立,且.
(1)求的值;
(2)求的解析式;
(3)已知,設:當時,不等式 恒成立;Q:當時,是單調函數(shù)。如果滿足成立的的集合記為,滿足Q成立的的集合記為,求A∩(CRB)(為全集).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=a﹣(a∈R)
(1)如果函數(shù)f(x)為奇函數(shù),求實數(shù)a的值;
(2)證明:對任意的實數(shù)a,函數(shù)f(x)在(﹣∞,+∞)上是增函數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知四棱錐P﹣ABCD的底面ABCD為菱形,且∠ABC=60°,
AB=PC=2,PA=PB= .
(1)求證:平面PAB⊥平面ABCD;
(2)設H是PB上的動點,求CH與平面PAB所成最大角的正切值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】要制作一個容積為8m3 , 高為2m的無蓋長方體容器,若容器的底面造價是每平方米200元,側面造型是每平方米100元,則該容器的最低總造價為( )
A.1200元
B.2400元
C.3600元
D.3800元
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列函數(shù)中與f(x)=x是同一函數(shù)的有( 。
①y=②y=③y=④y=⑤f(t)=t⑥g(x)=x
A. 1 個 B. 2 個 C. 3個 D. 4個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(xy)=f(x)+f(y).
(1) 若x,y∈R,求f(1),f(-1)的值; (2)若x,y∈R,判斷y=f(x)的奇偶性;
(3)若函數(shù)f(x)在其定義域(0,+∞)上是增函數(shù),f(2)=1,f(x)+f(x-2)≤3,求x的取值范圍。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com