【題目】已知動圓P:(x﹣a)2+(y﹣b)2=r2(r>0)被y軸所截的弦長為2,被x軸分成兩段弧,且弧長之比等于 (其中P(a,b)為圓心,O為坐標原點).
(1)求a,b所滿足的關(guān)系式;
(2)點P在直線x﹣2y=0上的投影為A,求事件“在圓P內(nèi)隨機地投入一點,使這一點恰好在△POA內(nèi)”的概率的最大值.

【答案】
(1)解:如圖所示,設(shè)圓P被y軸所截的弦為EF,與x軸相較于C,D兩點,

過點P作PM⊥EF,垂足為M,連接PE,由垂徑定理可得|EM|=1,在Rt△EMP中,r2=1+a2.①

∵被x軸分成兩段弧,且弧長之比等于 ,設(shè) 為劣弧,∴∠CPD=90°,

過點P作PN⊥x軸,垂足無N,連接PD,PC,則Rt△PND為等腰直角三角形,∴r2=2b2.②

聯(lián)立①②消去r可得:2b2=1+a2,即為a,b所滿足的關(guān)系式.


(2)解:點P到直線x﹣2y=0的距離|PA|= =d,

∵PA⊥OA,∴|OA|= = ,

∴SOAP= =

∴事件“在圓P內(nèi)隨機地投入一點,使這一點恰好在△POA內(nèi)”的概率P= =

= ,當且僅當d2=r2﹣d2,即 ,解得

∴P的最大值為


【解析】(1)利用垂徑定理,勾股定理、等腰直角三角形的性質(zhì)即可得出;(2)利用點到直線的距離公式、兩點間的距離公式先計算出三角形的面積,利用幾何概率的計算公式得出概率,進而利用導數(shù)求得其最大值.
【考點精析】解答此題的關(guān)鍵在于理解幾何概型的相關(guān)知識,掌握幾何概型的特點:1)試驗中所有可能出現(xiàn)的結(jié)果(基本事件)有無限多個;2)每個基本事件出現(xiàn)的可能性相等.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= sin2x﹣cos2x,有下列四個結(jié)論:①f(x)的最小正周期為π;②f(x)在區(qū)間[﹣ , ]上是增函數(shù);③f(x)的圖象關(guān)于點( ,0)對稱;④x= 是f(x)的一條對稱軸.其中正確結(jié)論的個數(shù)為(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)F(x)=lnx(x>1)的圖象與函數(shù)G(x)的圖象關(guān)于直線y=x對稱,若函數(shù)f(x)=(k﹣1)x﹣G(﹣x)無零點,則實數(shù)k的取值范圍是(
A.(1﹣e,1)
B.(1﹣e,∞)
C.(1﹣e,1]
D.(﹣∞,1﹣e)∪[1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】近幾年,電商行業(yè)的蓬勃發(fā)展也帶動了快遞業(yè)的高速發(fā)展.某快遞配送站每天至少要完成1800件包裹的配送任務,該配送站有8名新手快遞員和4名老快遞員,但每天最多安排10人進行配送.已知每個新手快遞員每天可配送240件包裹,日工資320元;每個老快遞員每天可配送300件包裹,日工資520元.

(Ⅰ)求該配送站每天需支付快遞員的總工資最小值;

(Ⅱ)該配送站規(guī)定:新手快遞員某個月被評為“優(yōu)秀”,則其下個月的日工資比這個月提高12%.那么新手快遞員至少連續(xù)幾個月被評為“優(yōu)秀”,日工資會超過老快遞員?

(參考數(shù)據(jù): , , .)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】以下四個關(guān)于圓錐曲線的命題中:
①雙曲線 與橢圓 有相同的焦點;
②以拋物線的焦點弦(過焦點的直線截拋物線所得的線段)為直徑的圓與拋物線的準線是相切的;
③設(shè)A,B為兩個定點,k為常數(shù),若|PA|﹣|PB|=k,則動點P的軌跡為雙曲線;
④過定圓C上一點A作圓的動弦AB,O為原點,若 則動點P的軌跡為橢圓.其中正確的個數(shù)是(
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校高三年級在高校自主招生期間,把學生的平時成績按“百分制”折算并排序,選出前300名學生,并對這300名學生按成績分組,第一組[75,80),第二組[80,85),第三組[85,90),第四組[90,95),第五組[95,100],如圖為頻率分布直方圖的一部分,其中第五組、第一組、第四組、第二組、第三組的人數(shù)依次成等差數(shù)列. (Ⅰ)請在圖中補全頻率分布直方圖;
(Ⅱ)若B大學決定在成績高的第4,5組中用
分層抽樣的方法抽取6名學生,并且分成2組,每組3人
進行面試,求95分(包括95分)以上的同學被分在同一個小組的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l1:2x+y+2=0,l2:mx+4y+n=0
(1)若l1⊥l2 , 求m的值,;
(2)若l1∥l2 , 且它們的距離為 ,求m、n的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓E: 的左、右焦點分別為F1、F2 , 離心率 ,P為橢圓E上的任意一點(不含長軸端點),且△PF1F2面積的最大值為1.
(1)求橢圓E的方程;
(2)已知直x﹣y+m=0與橢圓E交于不同的兩點A,B,且線AB的中點不在圓 內(nèi),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】關(guān)于x的不等式ax2﹣|x+1|+3a≥0的解集為(﹣∞,+∞),則實數(shù)a的取值范圍是

查看答案和解析>>

同步練習冊答案