【題目】已知函數(shù)F(x)=lnx(x>1)的圖象與函數(shù)G(x)的圖象關(guān)于直線y=x對(duì)稱,若函數(shù)f(x)=(k﹣1)x﹣G(﹣x)無零點(diǎn),則實(shí)數(shù)k的取值范圍是(
A.(1﹣e,1)
B.(1﹣e,∞)
C.(1﹣e,1]
D.(﹣∞,1﹣e)∪[1,+∞)

【答案】B
【解析】解:函數(shù)F(x)=lnx(x>1)的圖象與函數(shù)G(x)的圖象關(guān)于直線y=x對(duì)稱, 可得G(x)=ex , (x>1),
則G(﹣x)=ex , (x<﹣1),
函數(shù)f(x)=(k﹣1)x﹣G(﹣x)無零點(diǎn),
即f(x)=(k﹣1)x﹣ex , 沒有零點(diǎn),也就是y=(k﹣1)x,與y=ex , (x<﹣1),
沒有公共點(diǎn).
y′=﹣ex , 設(shè)切點(diǎn)坐標(biāo)為:(m,em),
可得:k﹣1=﹣em= ,解得m=﹣1,
此時(shí)k=1﹣e,
函數(shù)f(x)=(k﹣1)x﹣G(﹣x)無零點(diǎn),則k>1﹣e.
故選:B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱中,底面是等腰直角三角形, ,側(cè)棱,點(diǎn)分別為棱的中點(diǎn), 的重心為,直線垂直于平面.

1)求證:直線平面;

2)求二面角的余弦.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)列中, , ,其中

求證:數(shù)列為等差數(shù)列;

設(shè) ,數(shù)列的前項(xiàng)和為,若當(dāng)為偶數(shù)時(shí), 恒成立,求實(shí)數(shù)的取值范圍;

設(shè)數(shù)列的前項(xiàng)的和為,試求數(shù)列的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(Ⅰ)已知集合A={(x,y)|y=x2+2},B={(x,y)|y=6﹣x2},求A∩B; (Ⅱ)已知集合A={y|y=x2+2},B={y|y=6﹣x2},求A∩B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》中,將底面為長(zhǎng)方形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽(yáng)馬,將四個(gè)面都為直角三角形的四面體稱之為鱉臑.在如圖所示的陽(yáng)馬P﹣ABCD中,側(cè)棱PD⊥底面ABCD,且PD=CD,點(diǎn)E是PC的中點(diǎn),連接DE,BD,BE.
(1)證明:DE⊥平面PBC.
(2)試判斷四面體EBCD是否為鱉臑,若是,寫出其每個(gè)面的直角(只需寫出結(jié)論);若不是,請(qǐng)說明理由;
(3)記陽(yáng)馬P﹣ABCD的體積為V1 , 四面體EBCD的體積為V2 , 求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,且Sn=n2+n+1,n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{ }的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知則下列結(jié)論中正確的是

A. 將函數(shù)的圖象向左平移個(gè)單位后得到函數(shù)的圖象

B. 函數(shù)圖象關(guān)于點(diǎn)中心對(duì)稱

C. 函數(shù)的圖象關(guān)于對(duì)稱

D. 函數(shù)在區(qū)間內(nèi)單調(diào)遞增

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知?jiǎng)訄AP:(x﹣a)2+(y﹣b)2=r2(r>0)被y軸所截的弦長(zhǎng)為2,被x軸分成兩段弧,且弧長(zhǎng)之比等于 (其中P(a,b)為圓心,O為坐標(biāo)原點(diǎn)).
(1)求a,b所滿足的關(guān)系式;
(2)點(diǎn)P在直線x﹣2y=0上的投影為A,求事件“在圓P內(nèi)隨機(jī)地投入一點(diǎn),使這一點(diǎn)恰好在△POA內(nèi)”的概率的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某景區(qū)修建一棟復(fù)古建筑,其窗戶設(shè)計(jì)如圖所示的圓心與矩形對(duì)角線的交點(diǎn)重合,且圓與矩形上下兩邊相切(為上切點(diǎn)),與左右兩邊相交( 為其中兩個(gè)交點(diǎn)),圖中陰影部分為不透光區(qū)域,其余部分為透光區(qū)域已知圓的半徑為1m,設(shè)透光區(qū)域的面積為

1關(guān)于的函數(shù)關(guān)系式,并求出定義域;

2)根據(jù)設(shè)計(jì)要求,透光區(qū)域與矩形窗面的面積比值越大越好當(dāng)該比值最大時(shí),求邊的長(zhǎng)度

查看答案和解析>>

同步練習(xí)冊(cè)答案