【題目】已知橢圓過點(diǎn)P(2,1).
(1)求橢圓C的方程,并求其離心率;
(2)過點(diǎn)P作x軸的垂線l,設(shè)點(diǎn)A為第四象限內(nèi)一點(diǎn)且在橢圓C上(點(diǎn)A不在直線l上),點(diǎn)A關(guān)于l的對(duì)稱點(diǎn)為A',直線A'P與C交于另一點(diǎn)B.設(shè)O為原點(diǎn),判斷直線AB與直線OP的位置關(guān)系,并說明理由.
【答案】(1)見解析;(2)見解析
【解析】
(1)將點(diǎn)代入橢圓方程,求出,結(jié)合離心率公式即可求得橢圓的離心率;(2)設(shè)直線,,設(shè)點(diǎn)的坐標(biāo)為,,分別求出,,根據(jù)斜率公式,以及兩直線的位置關(guān)系與斜率的關(guān)系即可得結(jié)果.
(1)由橢圓方程橢圓過點(diǎn)P(2,1),可得.
所以,
所以橢圓C的方程為+=1,離心率e==,
(2)直線AB與直線OP平行.證明如下:
設(shè)直線,,
設(shè)點(diǎn)A的坐標(biāo)為(x1,y1),B(x2,y2),
由得,
∴,∴
同理,所以,
由,
有,
因?yàn)?/span>A在第四象限,所以,且A不在直線OP上.
∴,
又,故,
所以直線與直線平行.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4—4:坐標(biāo)系與參數(shù)方程
已知曲線的參數(shù)方程是 (是參數(shù), ),直線的參數(shù)方程是 (是參數(shù)),曲線與直線有一個(gè)公共點(diǎn)在軸上,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系
(1)求曲線的極坐標(biāo)方程;
(2)若點(diǎn),,在曲線上,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前n項(xiàng)和, 是等差數(shù)列,且.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)令.求數(shù)列的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓的離心率為,其左頂點(diǎn)在圓上.
(1)求橢圓的方程;
(2)直線與橢圓的另一個(gè)交點(diǎn)為,與圓的另一個(gè)交點(diǎn)為.
當(dāng)時(shí),求直線的斜率;
是否存在,使?若存在,求出直線的斜率;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時(shí),函數(shù)的圖象恒不在軸的上方,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地有三家工廠,分別位于矩形ABCD的頂點(diǎn)A,B,及CD的中點(diǎn)P處,已知km,,為了處理三家工廠的污水,現(xiàn)要在矩形ABCD的區(qū)域上(含邊界),且A,B與等距離的一點(diǎn)O處建造一個(gè)污水處理廠,并鋪設(shè)排污管道AO,BO,OP,設(shè)排污管道的總長(zhǎng)為ykm.
(I)按下列要求寫出函數(shù)關(guān)系式:
①設(shè),將表示成的函數(shù)關(guān)系式;
②設(shè),將表示成的函數(shù)關(guān)系式.
(Ⅱ)請(qǐng)你選用(I)中的一個(gè)函數(shù)關(guān)系式,確定污水處理廠的位置,使三條排水管道總長(zhǎng)度最短.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知焦點(diǎn)在x軸上,離心率為的橢圓E的左頂點(diǎn)為A,點(diǎn)A到右準(zhǔn)線的距離為6.
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)A且斜率為的直線與橢圓E交于點(diǎn)B,過點(diǎn)B與右焦點(diǎn)F的直線交橢圓E于M點(diǎn),求M點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,且過點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若,為橢圓上不同的兩點(diǎn),且以為直徑的圓過坐標(biāo)原點(diǎn).是否存在定圓與動(dòng)直線相切?若存在,求出該圓的方程;若不存在,說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com