【題目】如圖,設(shè)橢圓的中心為原點,長軸在軸上,上頂點為,左、右焦點分別為,線段的中點分別為,且是面積為的直角三角形.

(1)求該橢圓的離心率和標(biāo)準(zhǔn)方程;

(2)過作直線交橢圓于兩點,使,求的面積.

【答案】(1);(2)

【解析】試題分析:(1)設(shè)橢圓的方程為,F(xiàn)2(c,0),利用AB1B2是的直角三角形,|AB1|=AB2|,可得B1AB2為直角,從而,利用c2=a2﹣b2,可求得離心率,又=4,故可求橢圓標(biāo)準(zhǔn)方程;

(2)由()知B1(﹣2,0),B2(2,0),由題意,直線PQ的傾斜角不為0,故可設(shè)直線PQ的方程為x=my﹣2,代入橢圓方程,消元可得(m2+5)y2﹣4my﹣16﹣0,利用韋達定理及PB2QB2,利用可求m的值,進而可求PB2Q的面積.

試題解析:

(1)設(shè)橢圓的方程為, 是面積為的直角三角形, ,為直角,從而,得,

,在中, ,, ,橢圓標(biāo)準(zhǔn)方程為.

(2)由(1)知,由題意,直線的傾斜角不為,故可設(shè)直線的方程為,代入橢圓方程,消元可得,

設(shè),

,,當(dāng)時,可化為,

的面積.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 處有極值.

(Ⅰ)求a的值;

(Ⅱ)求f(x)在上的最大值和最小值;

(Ⅲ)在下面的坐標(biāo)系中作出上的圖象,若方程 上有2個不同的實數(shù)解,結(jié)合圖象求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知平面上的三點 、 .

(1)求以 為焦點且過點 的橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)點 、 關(guān)于直線 的對稱點分別為 、 ,求以 、 為焦點且過點 的雙曲線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某保險公司利用簡單隨機抽樣方法,對投保車輛進行抽樣,樣本車輛中每輛車的賠付結(jié)果統(tǒng)計如下:

賠付金額()

0

1 000

2 000

3 000

4 000

車輛數(shù)()

500

130

100

150

120

(1)若每輛車的投保金額均為2800,估計賠付金額大于投保金額的概率.

(2)在樣本車輛中,車主是新司機的占10%,在賠付金額為4000元的樣本車輛中,車主是新司機的占20%,估計在已投保車輛中,新司機獲賠金額為4000元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場舉行有獎促銷活動,顧客購買一定金額的商品后即可抽獎.抽獎方法是:從裝有2個紅球A1 ,A2和1個白球B的甲箱與裝有2個紅球a1 ,a2和2個白球b1,b2的乙箱中,各隨機摸出1個球.若摸出的2個球都是紅球則中獎,否則不中獎.

(1)用球的標(biāo)號列出所有可能的摸出結(jié)果;

(2)有人認為:兩個箱子中的紅球比白球多,所以中獎的概率大于不中獎的概率.你認為正確嗎?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)的圖象與函數(shù)y=x3﹣3x2+2的圖象關(guān)于點( ,0)對稱,過點(1,t)僅能作曲線y=f(x)的一條切線,則實數(shù)t的取值范圍是(
A.(﹣3,﹣2)
B.[﹣3,﹣2]
C.(﹣∞,﹣3)∪(﹣2,+∞)
D.(﹣∞,﹣3)∪[﹣2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了摸清整個江門大道的交通狀況,工作人員隨機選取20處路段,在給定的測試時間內(nèi)記錄到機動車的通行數(shù)量情況如下(單位:輛): 147 161 170 180 163 172 178 167 191 182
181 173 174 165 158 154 159 189 168 169
(Ⅰ)完成如下頻數(shù)分布表,并作頻率分布直方圖;

通行數(shù)量區(qū)間

[145,155)

[155,165)

[165,175)

[175,185)

[185,195)

頻數(shù)

(Ⅱ)現(xiàn)用分層抽樣的方法從通行數(shù)量區(qū)間為[165,175)、[175,185)及[185,195)的路段中取出7處加以優(yōu)化,再從這7處中隨機選2處安裝智能交通信號燈,設(shè)所取出的7處中,通行數(shù)量區(qū)間為[165,175)路段安裝智能交通信號燈的數(shù)量為隨機變量X(單位:盞),試求隨機變量X的分布列與數(shù)學(xué)期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】極坐標(biāo)系的極點在平面直角坐標(biāo)系的原點O處,極軸與x軸的正半軸重合,兩坐標(biāo)系單位長度相同.已知曲線的極坐標(biāo)方程為ρ=2cosθ+2sinθ,直線l的參數(shù)方程為 (t為參數(shù)).
(Ⅰ)將直線l的參數(shù)方程化為普通方程,將曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程;
(Ⅱ)設(shè)曲線C上到直線l的距離為d的點的個數(shù)為f(d),求f(d)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線過坐標(biāo)原點,的方程為

(1)當(dāng)直線的斜率為,與圓相交所得的弦長;

(2)設(shè)直線與圓交于兩點,的中點,求直線的方程

查看答案和解析>>

同步練習(xí)冊答案