【題目】對(duì)一批產(chǎn)品的內(nèi)徑進(jìn)行抽查,已知被抽查的產(chǎn)品的數(shù)量為200,所得內(nèi)徑大小統(tǒng)計(jì)如表所示:
(Ⅰ)以頻率估計(jì)概率,若從所有的這批產(chǎn)品中隨機(jī)抽取3個(gè),記內(nèi)徑在的產(chǎn)品個(gè)數(shù)為X,X的分布列及數(shù)學(xué)期望;
(Ⅱ)已知被抽查的產(chǎn)品是由甲、乙兩類機(jī)器生產(chǎn),根據(jù)如下表所示的相關(guān)統(tǒng)計(jì)數(shù)據(jù),是否有的把握認(rèn)為生產(chǎn)產(chǎn)品的機(jī)器種類與產(chǎn)品的內(nèi)徑大小具有相關(guān)性.
參考公式:,(其中為樣本容量).
0.050 | 0.010 | 0.001 | |
k | 3.841 | 6.635 | 10.828 |
【答案】(Ⅰ)分布列見(jiàn)解析,;(Ⅱ)沒(méi)有.
【解析】
(Ⅰ)由頻率分布表可知,任取1件產(chǎn)品,內(nèi)徑在[26,28)的概率,所以,根據(jù)二項(xiàng)分布的計(jì)算公式分別求出時(shí)的概率,列出分布列,再根據(jù)期望公式求出期望;(Ⅱ)首先依題意填寫列聯(lián)表,再求得的觀測(cè)值,結(jié)合臨界值表即可得出結(jié)論。
(I)任取1件產(chǎn)品,內(nèi)徑在[26,28)的概率,
故,
,
=,
=,
=,
故X的分布列為:
X | 0 | 1 | 2 | 3 |
P |
故;
(II)依題意,所得列聯(lián)表如下所示
內(nèi)徑小于28mm | 內(nèi)徑不小于28mm | 總計(jì) | |
甲機(jī)器生產(chǎn) | 68 | 32 | 100 |
乙機(jī)器生產(chǎn) | 60 | 40 | 100 |
總計(jì) | 128 | 72 | 200 |
的觀測(cè)值為,
故沒(méi)有99%的把握認(rèn)為生產(chǎn)產(chǎn)品的機(jī)器種類與產(chǎn)品的內(nèi)徑大小具有相關(guān)性。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,⊥底面,⊥,∥,AD=DC=AP=2,AB=1,點(diǎn)E為棱PC的中點(diǎn).
(1)證明:BE⊥DC;
(2)若F為棱PC上一點(diǎn),滿足BF⊥AC,求二面角F-AB-P的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】臍橙營(yíng)養(yǎng)豐富,含有人體所必需的各類營(yíng)養(yǎng)成份,若規(guī)定單個(gè)臍橙重量(單位:千克)在[0.1,0.3)的臍橙是“普通果”,重量在[0.3,0.5)的磨橙是“精品果”,重量在[0.5,0.7]的臍橙是“特級(jí)果”,有一果農(nóng)今年種植臍橙,大獲豐收為了了解臍橙的品質(zhì),隨機(jī)摘取100個(gè)臍橙進(jìn)行檢測(cè),其重量分別在[0.1,0.2),[0.2,0.3),[0.3,0.4),[0.4,0.5),[0.5,0.6),[0.6,0.7]中,經(jīng)統(tǒng)計(jì)得到如圖所示頻率分布直方圖
(1)將頻率視為概率,用樣本估計(jì)總體.現(xiàn)有一名消費(fèi)者從臍橙果園中,隨機(jī)摘取5個(gè)臍橙,求恰有3個(gè)是“精品果”的概率.
(2)現(xiàn)從摘取的100個(gè)臍橙中,采用分層抽樣的方式從重量為[0.4,0.5),[0.5,0.6)的臍橙中隨機(jī)抽取10個(gè),再?gòu)倪@10個(gè)抽取3個(gè),記隨機(jī)變量X表示重量在[0.5,0.6)內(nèi)的臍橙個(gè)數(shù),求X的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】條形碼是將寬度不等的多個(gè)黑條和空白,按照一定的編碼規(guī)則排列,用以表達(dá)一組信息的圖形標(biāo)識(shí)符。常見(jiàn)的條形碼是“”通用代碼,它是由從左到右排列的13個(gè)數(shù)字(用表示)組成,其中是校驗(yàn)碼,用來(lái)校驗(yàn)前12個(gè)數(shù)字代碼的正確性.下面的框圖是計(jì)算第13位校驗(yàn)碼的程序框圖,框圖中符號(hào)表示不超過(guò)的最大整數(shù)(例如).現(xiàn)有一條形碼如圖(1)所示,其中第6個(gè)數(shù)被污損, 那么這個(gè)被污損數(shù)字是( )
A. 6 B. 7 C. 8 D. 9
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的焦距為,離心率為,圓,是橢圓的左右頂點(diǎn),是圓的任意一條直徑,面積的最大值為2.
(1)求橢圓及圓的方程;
(2)若為圓的任意一條切線,與橢圓交于兩點(diǎn),求的取直范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=2x-1,(a∈R),若對(duì)任意x1∈[1,+∞),總存在x2∈R,使f(x1)=g(x2),則實(shí)數(shù)a的取值范圍是()
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列四種說(shuō)法:
(1)函數(shù)與函數(shù)的定義域相同;
(2)函數(shù)與的值域相同;
(3)若函數(shù)式定義在R上的偶函數(shù)且在為減函數(shù)對(duì)于銳角則;
(4)若函數(shù)且,則;
其中正確說(shuō)法的序號(hào)是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x,g(x)=x-4,則下列結(jié)論正確的是( )
A.若h(x)=f(x)g(x),則函數(shù)h(x)的最小值為4
B.若h(x)=f(x)|g(x)|,則函數(shù)h(x)的值域?yàn)?/span>R
C.若h(x)=|f(x)|-|g(x)|,則函數(shù)h(x)有且僅有一個(gè)零點(diǎn)
D.若h(x)=|f(x)|-|g(x)|,則|h(x)|≤4恒成立
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某房產(chǎn)中介公司2017年9月1日正式開業(yè),現(xiàn)對(duì)其每個(gè)月的二手房成交量進(jìn)行統(tǒng)計(jì),表示開業(yè)第個(gè)月的二手房成交量,得到統(tǒng)計(jì)表格如下:
(1)統(tǒng)計(jì)中常用相關(guān)系數(shù)來(lái)衡量?jī)蓚(gè)變量之間線性關(guān)系的強(qiáng)弱.統(tǒng)計(jì)學(xué)認(rèn)為,對(duì)于變量,如果,那么相關(guān)性很強(qiáng);如果,那么相關(guān)性一般;如果,那么相關(guān)性較弱.通過(guò)散點(diǎn)圖初步分析可用線性回歸模型擬合與的關(guān)系.計(jì)算的相關(guān)系數(shù),并回答是否可以認(rèn)為兩個(gè)變量具有很強(qiáng)的線性相關(guān)關(guān)系(計(jì)算結(jié)果精確到0.01)
(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程(計(jì)算結(jié)果精確到0.01),并預(yù)測(cè)該房產(chǎn)中介公司2018年6月份的二手房成交量(計(jì)算結(jié)果四舍五入取整數(shù)).
(3)該房產(chǎn)中介為增加業(yè)績(jī),決定針對(duì)二手房成交客戶開展抽獎(jiǎng)活動(dòng).若抽中“一等獎(jiǎng)”獲6千元獎(jiǎng)金;抽中“二等獎(jiǎng)”獲3千元獎(jiǎng)金;抽中“祝您平安”,則沒(méi)有獎(jiǎng)金.已知一次抽獎(jiǎng)活動(dòng)中獲得“一等獎(jiǎng)”的概率為,獲得“二等獎(jiǎng)”的概率為,現(xiàn)有甲、乙兩個(gè)客戶參與抽獎(jiǎng)活動(dòng),假設(shè)他們是否中獎(jiǎng)相互獨(dú)立,求此二人所獲獎(jiǎng)金總額(千元)的分布列及數(shù)學(xué)期望.
參考數(shù)據(jù):,,,,.
參考公式:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com