【題目】已知函數(shù),其中實(shí)數(shù)

(1)若,求函數(shù)上的最值;

(2)若,討論函數(shù)的單調(diào)性.

【答案】(1)最大值是5-2ln5,最小值為2﹣2ln2;(2)見(jiàn)解析

【解析】試題分析:(1)求出, 得增區(qū)間, 得減區(qū)間,從而求出函數(shù)在閉區(qū)間上的最值即可;(2)求出函數(shù)的導(dǎo)數(shù),通過(guò)討論 的范圍,確定導(dǎo)函數(shù)的符號(hào),從而求出函數(shù)的單調(diào)區(qū)間即可.

試題解析:(1)∵f(x)=x﹣2lnx,∴f′(x)=,令f′(x)=0,∴x=2.列表如下,

x

1

(1,2)

2

(2,5)

5

f'(x)

0

+

f(x)

1

2﹣2ln2

5﹣2ln5

從上表可知,∵f(5)﹣f(1)=4﹣2ln5>0,∴f(5)>f(1),

函數(shù)f(x)在區(qū)間[1,3]上的最大值是5-2ln5,最小值為2﹣2ln2;

(2)f′(x)=1+ - ==,

①當(dāng)a>2時(shí),x∈(0,2)∪(a,+∞)時(shí),f′(x)>0;當(dāng)x∈(2,a)時(shí),f′(x)<0,

∴f(x)的單調(diào)增區(qū)間為(0,2),(a,+∞),單調(diào)減區(qū)間為(2,a);

②當(dāng)a=2時(shí),∵f′(x)= >0(x≠2),∴f(x)的單調(diào)增區(qū)間為(0,+∞);

③當(dāng)0<a<2時(shí),x∈(0,a)∪(2,+∞)時(shí),f′(x)>0;當(dāng)x∈(a,2)時(shí),f′(x)<0,

∴f(x)的單調(diào)增區(qū)間為(0,a),(2,+∞),單調(diào)減區(qū)間為(a,2);

綜上,當(dāng)a>2時(shí),f(x)的單調(diào)增區(qū)間為(0,2),(a,+∞),單調(diào)減區(qū)間為(2,a);

當(dāng)a=2時(shí),f(x)的單調(diào)增區(qū)間為(0,+∞);

當(dāng)0<a<2時(shí),f(x)的單調(diào)增區(qū)間為(0,a),(2,+∞),單調(diào)減區(qū)間為(a,2).

【方法點(diǎn)晴】本題主要考查的是利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、利用導(dǎo)數(shù)研究函數(shù)的最值,屬于難題.利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性進(jìn)一步求函數(shù)最值的步驟:①確定函數(shù)的定義域;②對(duì)求導(dǎo);③令,解不等式得的范圍就是遞增區(qū)間;令,解不等式得的范圍就是遞減區(qū)間;④根據(jù)單調(diào)性求函數(shù)的極值及最值(閉區(qū)間上還要注意比較端點(diǎn)處函數(shù)值的大。.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) (為自然對(duì)數(shù)的底數(shù),, (,),

上的最大值的表達(dá)式;

時(shí),方程上恰有兩個(gè)相異實(shí)根,求實(shí)根的取值范圍;

,,求使得圖像恒在圖像上方的最大正整數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形是邊長(zhǎng)為4的正方形,點(diǎn)邊上任意一點(diǎn)(與點(diǎn)不重合),連接,過(guò)點(diǎn)于點(diǎn),且,過(guò)點(diǎn),交于點(diǎn),連接,設(shè).

(1)求點(diǎn)的坐標(biāo)(用含的代數(shù)式表示)

(2)試判斷線(xiàn)段的長(zhǎng)度是否隨點(diǎn)的位置的變化而改變?并說(shuō)明理由.

(3)當(dāng)為何值時(shí),四邊形的面積最小.

(4)在軸正半軸上存在點(diǎn),使得是等腰三角形,請(qǐng)直接寫(xiě)出不少于4個(gè)符合條件的點(diǎn)的坐標(biāo)(用含的式子表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知直線(xiàn)的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為且曲線(xiàn)的左焦點(diǎn)在直線(xiàn)

(1)若直線(xiàn)與曲線(xiàn)交于兩點(diǎn),求的值;

(2)求曲線(xiàn)的內(nèi)接矩形的周長(zhǎng)的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地區(qū)預(yù)計(jì)從2015年初開(kāi)始的第月,商品的價(jià)格 ,價(jià)格單位:元),且第月該商品的銷(xiāo)售量(單位:萬(wàn)件).

(1)商品在2015年的最低價(jià)格是多少?

(2)2015年的哪一個(gè)月的銷(xiāo)售收入最少,最少是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】吉安一中舉行了一次環(huán)保知識(shí)競(jìng)賽活動(dòng),解本了次競(jìng)賽學(xué)生成績(jī)情況,從中抽取部分學(xué)生的分?jǐn)?shù)(分取正整數(shù),滿(mǎn)分為樣(樣本容 )進(jìn)行統(tǒng)計(jì)按照 的分作出率分布直方圖,并作出樣本分?jǐn)?shù)的莖葉圖(圖中僅列出了得分在的數(shù)據(jù))

(1)求樣本容量率分布直方圖中的值;

(2)在選取的樣本中,從競(jìng)賽學(xué)生成績(jī)是分以上(含分)的同學(xué)中隨機(jī)抽取名同學(xué)到市政廣場(chǎng)參加環(huán)保知識(shí)宣傳的志愿者活動(dòng),求所抽取的名同學(xué)中得分在的學(xué)生人數(shù)恰有一人的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)為正常數(shù).

⑴若,且,求函數(shù)的單調(diào)增區(qū)間;

⑵在⑴中當(dāng)時(shí),函數(shù)的圖象上任意不同的兩點(diǎn),線(xiàn)段的中點(diǎn)為,記直線(xiàn)的斜率為,試證明:

⑶若,且對(duì)任意的, ,都有,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)).

(1)若,求曲線(xiàn)處切線(xiàn)的斜率;

(2)求的單調(diào)區(qū)間;

(3)設(shè),若對(duì)任意,均存在,使得,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明和爸爸周末到濕地公園進(jìn)行鍛煉,兩人上午9:00從公園入口出發(fā),沿相同路線(xiàn)勻速運(yùn)動(dòng),小明15分鐘后到達(dá)目的地,此時(shí)爸爸離出發(fā)地的路程為1200米,小明到達(dá)目的地后立即按原路勻速返回,與爸爸相遇后,和爸爸一起從原路返回出發(fā)地.小明、爸爸在鍛煉過(guò)程中離出發(fā)地的路程與小明出發(fā)的時(shí)間的函數(shù)關(guān)系如圖.

(1)圖中________, _______

(2)求小明和爸爸相遇的時(shí)刻.

查看答案和解析>>

同步練習(xí)冊(cè)答案