【題目】已知函數(shù) (為自然對數(shù)的底數(shù),, (,),

上的最大值的表達式;

時,方程上恰有兩個相異實根,求實根的取值范圍;

,,求使得圖像恒在圖像上方的最大正整數(shù)

【答案】(1);(2) ;(3)

【解析】

試題分析:(1)借助題設條件運用分類整合思想求解;(2)依據(jù)題設運用化歸轉(zhuǎn)化的數(shù)學思想進行探求;(3)依據(jù)題設構(gòu)造函數(shù),運用導數(shù)的知識求解

試題解析:

(1)時,,

;

時,,上為增函數(shù),此時,

時,,上為增函數(shù),

上為增函數(shù),此時…………………………………2分

時,上為增函數(shù),在上為減函數(shù),

,即/span>時,故上為增函數(shù),在上為減函數(shù),

此時………………………………5分

,即時,上為增函數(shù),則此時,

綜上所述: ………………………………6分,

(2),

上單調(diào)遞減,在上單調(diào)遞增,……………7分

上恰有兩個相異實根,

實數(shù)的取值范圍是,…………………………………10分

(3)由題設:,,(*)

,故上單調(diào)遞減,在上單調(diào)遞增,

(*)

,則,

上單調(diào)遞增,在上單調(diào)遞減,…………………………12分

,

,

故存在,使,

時,,時,,

,,時,使的圖像恒在圖像的上方的最大整數(shù)………………14分

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】橢圓的中心在坐標原點,焦點在軸上,焦點到短軸端點的距離為2,離心率為.

(Ⅰ)求該橢圓的方程;

(Ⅱ)若直線與橢圓交于, 兩點且,是否存在以原點為圓心的定圓與直線相切?若存在求出定圓的方程;若不存在,請說明理由

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓1(a>b>0)的離心率e,連結(jié)橢圓的四個頂點得到的菱形的面積為4.

(1)求橢圓的方程;

(2)設直線l與橢圓相交于不同的兩點A,B.已知點A的坐標為(a,0).若|AB|,求直線l的傾斜角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)axx2xlna,a>1.

(1)求證:函數(shù)f(x)(0,+∞)上單調(diào)遞增;

(2)對任意x1,x2∈[1,1]|f(x1)f(x2)|≤e1恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司為確立下一年度投入某種產(chǎn)品的宣傳費,需了解年宣傳費(單位:千元)對年銷售量(單位: )和年利潤(單位:千元)的影響.對近年的宣傳費和年銷售量數(shù)據(jù)作了初步處理,得到下面的散點圖及一些統(tǒng)計量的值.

表中

(Ⅰ)根據(jù)散點圖判斷, 哪一個適宜作為年銷售量關(guān)于年宣傳費的回歸方程類型?(給出判斷即可,不必說明理由)

(Ⅱ)根據(jù)(Ⅰ)的判斷結(jié)果及表中數(shù)據(jù),建立關(guān)于的回歸方程;

(Ⅲ)已知這種產(chǎn)品的年利率的關(guān)系為.根據(jù)(Ⅱ)的結(jié)果回答下列問題:

(i)年宣傳費時,年銷售量及利潤的預報值是多少?

(ii)年宣傳費為何值時,年利率的預報值最大?

附:對于一組數(shù)據(jù)……,其回歸線的斜率和截距的最小二乘法估計分別為: ,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知矩形所在的平面, 分別為的中點, .

(1)求證: 平面;

(2)求與面所成角大小的正弦值;

(3)求證: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分14分)

已知函數(shù)為常數(shù))的圖像與軸交于點,曲線在點處的切線斜率為.

(1)的值及函數(shù)的極值;

(2)證明:當時,

(3)證明:對任意給定的正數(shù),總存在,使得當時,恒有

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】用01,2, 3,4,5這六個數(shù)字:

1)能組成多少個無重復數(shù)字的四位偶數(shù)?

2)能組成多少個無重復數(shù)字且為5的倍數(shù)的五位數(shù)?

3)能組成多少個無重復數(shù)字且比1325大的四位數(shù)?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中實數(shù)

(1)若,求函數(shù)上的最值;

(2)若,討論函數(shù)的單調(diào)性.

查看答案和解析>>

同步練習冊答案