【題目】已知橢圓1(a>b>0)的離心率e,連結(jié)橢圓的四個(gè)頂點(diǎn)得到的菱形的面積為4.

(1)求橢圓的方程;

(2)設(shè)直線l與橢圓相交于不同的兩點(diǎn)AB.已知點(diǎn)A的坐標(biāo)為(a,0).若|AB|,求直線l的傾斜角.

【答案】(1y212

【解析】(1)e,解得3a24c2.再由c2a2b2,解得a2b.

由題意可知×2a×2b4,即ab2.解方程組

所以橢圓的方程為y21.

(2)(1)可知點(diǎn)A(2,0),設(shè)點(diǎn)B的坐標(biāo)為(x1,y1),直線l的斜率為k,則直線l的方程為yk(x2).于是AB兩點(diǎn)的坐標(biāo)滿足方程組

消去y并整理,得(14k2)x216k2x(16k24)0,

由-2x1,得x1,從而y1

|AB|.

|AB|,得.整理得32k49k2230,

(k21)(32k223)0,解得k±1.所以直線l的傾斜角為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以下是解決數(shù)學(xué)問題的思維過程的流程圖:

在此流程圖中,①、②兩條流程線與“推理與證明”中的思維方法匹配正確的是( )

A. ①—分析法,②—反證法 B. ①—分析法,②—綜合法

C. ①—綜合法,②—反證法 D. ①—綜合法,②—分析法

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)圖象上點(diǎn)處的切線方程與直線平行(其中),.

(Ⅰ)求函數(shù)的解析式;

(Ⅱ)求函數(shù))上的最小值;

(Ⅲ)對一切 恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法中,正確的有(  )

①函數(shù)y的定義域?yàn)?/span>{x|x1};

②函數(shù)yx2x+1(0,+)上是增函數(shù);

③函數(shù)f(x)=x3+1(xR),若f(a)=2,則f(-a)=-2;

④已知f(x)R上的增函數(shù),若ab>0,則有f(a)+f(b)>f(-a)+f(-b).

A. 0個(gè) B. 1個(gè) C. 2個(gè) D. 3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)p:實(shí)數(shù)x滿足,其中,命題實(shí)數(shù)滿足

|x-3|≤1 .

(1)若為真,求實(shí)數(shù)的取值范圍;

(2)若的充分不必要條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人練習(xí)罰球,每人練習(xí)6組,每組罰球20個(gè),命中個(gè)數(shù)莖葉圖如下:

(1)求甲命中個(gè)數(shù)的中位數(shù)和乙命中個(gè)數(shù)的眾數(shù);

(2)通過計(jì)算,比較甲乙兩人的罰球水平.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)求的最小正周期;

(2)設(shè),若上的值域?yàn)?/span>,求實(shí)數(shù)的值;

(3)若對任意的恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) (為自然對數(shù)的底數(shù),, (,),

上的最大值的表達(dá)式;

時(shí),方程上恰有兩個(gè)相異實(shí)根,求實(shí)根的取值范圍;

,,求使得圖像恒在圖像上方的最大正整數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形是邊長為4的正方形,點(diǎn)邊上任意一點(diǎn)(與點(diǎn)不重合),連接,過點(diǎn)于點(diǎn),且,過點(diǎn),交于點(diǎn),連接,設(shè).

(1)求點(diǎn)的坐標(biāo)(用含的代數(shù)式表示)

(2)試判斷線段的長度是否隨點(diǎn)的位置的變化而改變?并說明理由.

(3)當(dāng)為何值時(shí),四邊形的面積最小.

(4)在軸正半軸上存在點(diǎn),使得是等腰三角形,請直接寫出不少于4個(gè)符合條件的點(diǎn)的坐標(biāo)(用含的式子表示)

查看答案和解析>>

同步練習(xí)冊答案