【題目】已知橢圓=1(a>b>0)的離心率e=,連結(jié)橢圓的四個(gè)頂點(diǎn)得到的菱形的面積為4.
(1)求橢圓的方程;
(2)設(shè)直線l與橢圓相交于不同的兩點(diǎn)A,B.已知點(diǎn)A的坐標(biāo)為(-a,0).若|AB|=,求直線l的傾斜角.
【答案】(1)+y2=1(2)或
【解析】(1)由e==,解得3a2=4c2.再由c2=a2-b2,解得a=2b.
由題意可知×2a×2b=4,即ab=2.解方程組得
所以橢圓的方程為+y2=1.
(2)由(1)可知點(diǎn)A(-2,0),設(shè)點(diǎn)B的坐標(biāo)為(x1,y1),直線l的斜率為k,則直線l的方程為y=k(x+2).于是A、B兩點(diǎn)的坐標(biāo)滿足方程組
消去y并整理,得(1+4k2)x2+16k2x+(16k2-4)=0,
由-2x1=,得x1=,從而y1=,
故|AB|==.
由|AB|=,得=.整理得32k4-9k2-23=0,
即(k2-1)(32k2+23)=0,解得k=±1.所以直線l的傾斜角為或
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下是解決數(shù)學(xué)問題的思維過程的流程圖:
在此流程圖中,①、②兩條流程線與“推理與證明”中的思維方法匹配正確的是( )
A. ①—分析法,②—反證法 B. ①—分析法,②—綜合法
C. ①—綜合法,②—反證法 D. ①—綜合法,②—分析法
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)圖象上點(diǎn)處的切線方程與直線平行(其中),.
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)求函數(shù)在()上的最小值;
(Ⅲ)對一切, 恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法中,正確的有( )
①函數(shù)y=的定義域?yàn)?/span>{x|x≥1};
②函數(shù)y=x2+x+1在(0,+∞)上是增函數(shù);
③函數(shù)f(x)=x3+1(x∈R),若f(a)=2,則f(-a)=-2;
④已知f(x)是R上的增函數(shù),若a+b>0,則有f(a)+f(b)>f(-a)+f(-b).
A. 0個(gè) B. 1個(gè) C. 2個(gè) D. 3個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)p:實(shí)數(shù)x滿足,其中,命題實(shí)數(shù)滿足
|x-3|≤1 .
(1)若且為真,求實(shí)數(shù)的取值范圍;
(2)若是的充分不必要條件,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人練習(xí)罰球,每人練習(xí)6組,每組罰球20個(gè),命中個(gè)數(shù)莖葉圖如下:
(1)求甲命中個(gè)數(shù)的中位數(shù)和乙命中個(gè)數(shù)的眾數(shù);
(2)通過計(jì)算,比較甲乙兩人的罰球水平.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求的最小正周期;
(2)設(shè),若在上的值域?yàn)?/span>,求實(shí)數(shù)的值;
(3)若對任意的和恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) (為自然對數(shù)的底數(shù),), (,),
⑴若,.求在上的最大值的表達(dá)式;
⑵若時(shí),方程在上恰有兩個(gè)相異實(shí)根,求實(shí)根的取值范圍;
⑶若,,求使得圖像恒在圖像上方的最大正整數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形是邊長為4的正方形,點(diǎn)為邊上任意一點(diǎn)(與點(diǎn)不重合),連接,過點(diǎn)作交于點(diǎn),且,過點(diǎn)作,交于點(diǎn),連接,設(shè).
(1)求點(diǎn)的坐標(biāo)(用含的代數(shù)式表示)
(2)試判斷線段的長度是否隨點(diǎn)的位置的變化而改變?并說明理由.
(3)當(dāng)為何值時(shí),四邊形的面積最小.
(4)在軸正半軸上存在點(diǎn),使得是等腰三角形,請直接寫出不少于4個(gè)符合條件的點(diǎn)的坐標(biāo)(用含的式子表示)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com