已知數(shù)列中,,,數(shù)列中,,且點在直線上.
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)求數(shù)列的通項公式;
(Ⅲ)若,求數(shù)列的前項和.
(Ⅰ) ;(Ⅱ);(Ⅲ).
解析試題分析:(Ⅰ) 由已知可構(gòu)造數(shù)列,并證明其為等比數(shù)列,先求出數(shù)列的通項公式,再求數(shù)列的通項公式(一般形如的遞推關(guān)系,可先構(gòu)造等比數(shù)列,其公比與常數(shù),可由與所給等式進行比較求得);(Ⅱ)將點代入直線方程,可得到數(shù)列中與的關(guān)系式,從而發(fā)現(xiàn)為等差數(shù)列,即可求出數(shù)列的通項公式;(Ⅲ)由(Ⅰ) (Ⅱ)可得數(shù)列的通項公式,觀察中各項關(guān)系,可用錯位相減法來求出(錯位相減法是求數(shù)列前項和的常用方法,它適用于如果一個數(shù)列的各項是由一個等差數(shù)列和一個等比數(shù)列的對應(yīng)各項之積構(gòu)成的).
試題解析:(Ⅰ)由得
所以是首項為,公比為2的等比數(shù)列.
所以,故
(Ⅱ)因為在直線上,
所以即又
故數(shù)列是首項為1,公差為1的等差數(shù)列,
所以
(Ⅲ)== 故
所以
故
相減得
所以
考點:1.等比數(shù)列;2.等差數(shù)列;3.數(shù)列前項和求法.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列{an}是首項為-1,公差d 0的等差數(shù)列,且它的第2、3、6項依次構(gòu)成等比數(shù)列{bn}的前3項。
(1)求{an}的通項公式;
(2)若Cn=an·bn,求數(shù)列{Cn}的前n項和Sn。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
現(xiàn)在市面上有普通型汽車(以汽油為燃料)和電動型汽車兩種。某品牌普通型汽車車價為12萬元,第一年汽油的消費為6000元,隨著汽油價格的不斷上升,汽油的消費每年以20%的速度增長。其它費用(保險及維修費用等)第一年為5000元,以后每年遞增2000元。而電動汽車由于節(jié)能環(huán)保,越來越受到社會認可。某品牌電動車在某市上市,車價為25萬元,購買時一次性享受國家補貼價6萬元和該市市政府補貼價4萬元。電動汽車動力不靠燃油,而靠電池。電動車使用的普通鋰電池平均使用壽命大約兩年(也即兩年需更換電池一次),電池價格為1萬元,電動汽車的其它費用每年約為5000元。
求使用年,普通型汽車的總耗資費(萬元)的表達式
(總耗資費=車價+汽油費+其它費用)
比較兩種汽車各使用10年的總耗資費用
(參考數(shù)據(jù): )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知各項都不相等的等差數(shù)列的前6項和為60,且為和的等比中項.
( I ) 求數(shù)列的通項公式;
(II) 若數(shù)列滿足,且,求數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列中,且點在直線上。
(1)求數(shù)列的通項公式;
(2)若函數(shù)求函數(shù)的最小值;
(3)設(shè)表示數(shù)列的前項和.試問:是否存在關(guān)于的整式,使得
對于一切不小于2的自然數(shù)恒成立?若存在,寫出的解析式,并加以證明;若不存在,試說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在等比數(shù)列{}中,,公比,且, 與的等比中項為2.
(1)求數(shù)列{}的通項公式;
(2)設(shè) ,求:數(shù)列{}的前項和為,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列{an}滿足:, ,
(Ⅰ)求,并求數(shù)列{an}通項公式;
(Ⅱ)記數(shù)列{an}前2n項和為,當(dāng)取最大值時,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列的公差,它的前項和為,若,且、、成等比數(shù)列.
(1)求數(shù)列的通項公式;
(2)設(shè)數(shù)列的前項和為,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列滿足:,的前n項和為.
(1)求及;
(2)已知數(shù)列的第n項為,若成等差數(shù)列,且,設(shè)數(shù)列的前項和.求數(shù)列的前項和.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com