【題目】已知橢圓C: 經過點,且離心率為.
(1)求橢圓C的方程;
(2)設直線: 與橢圓C交于兩個不同的點A,B,求面積的最大值(O為坐標原點).
科目:高中數學 來源: 題型:
【題目】已知一工廠生產了某種產品700件,該工廠對這些產品進行了安全和環(huán)保這兩個性能的質量檢測。工廠決定利用隨機數表法從中抽取100件產品進行抽樣檢測,現將700件產品按001,002,…,700進行編號;
(1)如果從第8行第4列的數開始向右讀,請你依次寫出最先檢測的3件產品的編號;
(下面摘取了隨機數表的第7~9行)
84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76
63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79
33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54
(2)抽取的100件產品的安全性能和環(huán)保性能的質量檢測結果如下表:
檢測結果分為優(yōu)等、合格、不合格三個等級,橫向和縱向分別表示安全性能和環(huán)保性能。若在該樣本中,產品環(huán)保性能是優(yōu)等的概率為,求,的值。
件數 | 環(huán)保性能 | |||
優(yōu)等 | 合格 | 不合格 | ||
安全性能 | 優(yōu)等 | 6 | 20 | 5 |
合格 | 10 | 18 | 6 | |
不合格 | 4 |
(3)已知,,求在安全性能不合格的產品中,環(huán)保性能為優(yōu)等的件數比不合格的件數少的概率。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數,其中.
(1)求函數的單調區(qū)間;
(2)已知當(其中是自然對數)時,在上至少存在一點,使成立,求的取值范圍;
(3)求證:當時,對任意, ,有.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2017年“雙節(jié)”期間,高速公路車輛較多.某調查公司在一服務區(qū)從七座以下小型汽車中按進服務區(qū)的先后每間隔50輛就抽取一輛的抽樣方法抽取40名駕駛員進行詢問調查,將他們在某段高速公路的車速分成六段: , , , , , 后得到如圖的頻率分布直方圖.
(1)調查公司在采樣中,用到的是什么抽樣方法?
(2)求這40輛小型車輛車速的眾數、中位數及平均數的估計值;
(3)若從車速在的車輛中任抽取2輛,求車速在的車輛至少有一輛的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線上一點的縱坐標為4,且點到焦點的距離為5.
(1)求拋物線的方程;
(2)設斜率為的兩條平行直線分別經過點和,如圖. 與拋物線交于兩點, 與拋 物線交兩點.問:是否存在實數,使得四邊形的面積為?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知是不重合直線,是不重合平面,則下列命題
①若,則∥
②若∥∥,則∥
③若∥、∥,則∥
④若,則∥
⑤若,則∥
為假命題的是
A. ①②③ B. ①②⑤ C. ③④⑤ D. ①②④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數, .
(1)當時,求曲線在點處的切線方程;
(2)當時,判斷方程在區(qū)間上有無實根;
(3)若時,不等式恒成立,求實數的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知在平面直角坐標系中,直線l過點P(1,2).
(1)若直線l在x軸和y軸上的截距相等,求直線l的方程;
(2)求坐標原點O到直線l距離取最大值時的直線l的方程;
(3)設直線l與x軸正半軸、y軸正半軸分別相交于A,B兩點,當|PA||PB|最小時,求直線l的方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com