【題目】已知數(shù)列滿足,.
(1)求證:數(shù)列是等差數(shù)列,并求數(shù)列的通項公式;
(2)記,為數(shù)列的前項和,若對任意的正整數(shù)都成立,求實數(shù)的最小值.
【答案】(1)見解析,;(2)
【解析】
(1)根據(jù),,化簡變形可得,從而證明數(shù)列是等差數(shù)列;即可求得數(shù)列的通項公式,從而得到數(shù)列的通項公式;
(2)求出,然后利用錯位相減法求出數(shù)列的前項和,再根據(jù)對任意的正整數(shù)都成立,可得對任意的正整數(shù)都成立,最后利用基本不等式求出的最大值即可得到的最小值.
(1)證明:,,,,
,即,又,,
數(shù)列是以1為首項,1為公差的等差數(shù)列;
,,數(shù)列的通項公式為;
(2)由(1)知,,,
.
由對任意的正整數(shù)都成立,得對任意的正整數(shù)都成立,
,當且僅當時取等號, ,的最小值為.
科目:高中數(shù)學 來源: 題型:
【題目】已知為橢圓的右焦點,點在上,且軸.
(1)求的方程;
(2)過的直線交于兩點,交直線于點.判定直線的斜率是否依次構(gòu)成等差數(shù)列?請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知兩個不相等的非零向量與,兩組向量,,,,和,,,,均有2個和3個按照某種順序排成一列所構(gòu)成,記,且表示所有可能取值中的最小值,有以下結(jié)論:①有5個不同的值;②若,則與無關;③ 若∥,則與無關;④ 若,則;⑤若,且,則與的夾角為;正確的結(jié)論的序號是( )
A.①②④B.②④C.②③D.①⑤
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了測量某塔的高度,某人在一條水平公路兩點進行測量.在點測得塔底在南偏西,塔頂仰角為,此人沿著南偏東方向前進10米到點,測得塔頂?shù)难鼋菫?/span>,則塔的高度為( )
A. 5米B. 10米C. 15米D. 20米
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某單位有員工1000名,平均每人每年創(chuàng)造利潤10萬元.為增加企業(yè)競爭力,決定優(yōu)化產(chǎn)業(yè)結(jié)構(gòu),調(diào)整出名員工從事第三產(chǎn)業(yè),調(diào)整后平均每人每年創(chuàng)造利潤為萬元,剩下的員工平均每人每年創(chuàng)造的利潤可以提高.
(1)若要保證剩余員工創(chuàng)造的年總利潤不低于原來1000名員工創(chuàng)造的年總利潤,則最多調(diào)整出多少名員工從事第三產(chǎn)業(yè)?
(2)若要保證剩余員工創(chuàng)造的年總利潤不低于原來1000名員工創(chuàng)造的年總利潤條件下,若要求調(diào)整出的員工創(chuàng)造出的年總利潤始終不高于剩余員工創(chuàng)造的年總利潤,則的取值范圍是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),.
(1)解不等式:
(2)是否存在實數(shù)t,使得不等式,對任意的及任意銳角都成立,若存在,求出t的取值范圍:若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某企業(yè)生產(chǎn)某種商品噸,此時所需生產(chǎn)費用為()萬元,當出售這種商品時,每噸價格為萬元,這里(為常數(shù),)
(1)為了使這種商品的生產(chǎn)費用平均每噸最低,那么這種商品的產(chǎn)量應為多少噸?
(2)如果生產(chǎn)出來的商品能全部賣完,當產(chǎn)量是120噸時企業(yè)利潤最大,此時出售價格是每噸160萬元,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出以下命題,
①命題“若,則或”為真命題;
②命題“若,則”的否命題為真命題;
③若平面上不共線的三個點到平面距離相等,則
④若,是兩個不重合的平面,直線,命題,命題,則是的必要不充分條件;
⑤平面過正方體的三個頂點,且與底面的交線為,則∥;
其中,真命題的序號是______
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知點F為拋物線的焦點,點A在拋物線E上,
點B在x軸上,且是邊長為2的等邊三角形。
(1)求拋物線E的方程;
(2)設C是拋物線E上的動點,直線為拋物線E在點C處的切線,求點B到直線距離的最小值,并求此時點C的坐標。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com