函數(shù)f(x)=ax(a>0且a≠1)在區(qū)間[1,2]上的最大值比最小值大
a
2
,則a的值為
 
考點(diǎn):指數(shù)函數(shù)的圖像與性質(zhì)
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:當(dāng)a>1時(shí),函數(shù)f(x)在區(qū)間[1,2]上單調(diào)遞增,由f(2)-f(1)=
a
2
,解得a的值.當(dāng) 0<a<1時(shí),函數(shù)f(x)在區(qū)間[1,2]上單調(diào)遞減,由f(1)-f(2)=
a
2

解得a的值,綜合可得結(jié)論.
解答: 解:由題意可得:
∵當(dāng)a>1時(shí),函數(shù)f(x)在區(qū)間[1,2]上單調(diào)遞增,
∴f(2)-f(1)=a2-a=
a
2
,解得a=0(舍去),或a=
3
2

∵當(dāng) 0<a<1時(shí),函數(shù)f(x)在區(qū)間[1,2]上單調(diào)遞減,
∴f(1)-f(2)=a-a2=
a
2
,解得a=0(舍去),或a=
1
2

綜上可得,a=
3
2
,或 a=
1
2
點(diǎn)評(píng):本題主要考查指數(shù)函數(shù)的單調(diào)性的應(yīng)用,體現(xiàn)了分類(lèi)討論的數(shù)學(xué)思想,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

F1,F(xiàn)2是雙曲線(xiàn)
x2
9
-
y2
7
=1的兩個(gè)焦點(diǎn),A為雙曲線(xiàn)上一點(diǎn),且∠AF1F2=45°,則△AF1F2的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列結(jié)論:
①函數(shù)y=-tanx在區(qū)間(-
π
2
,
π
2
)上是減函數(shù);
②不等式|2x-1|>3的解集是{x|x>2};
③m=
2
是兩直線(xiàn)2x+my+1=0與mx+y-1=0平行的充分不必要條件;
④函數(shù)y=x|x-2|的圖象與直線(xiàn)y=
1
2
有三個(gè)交點(diǎn).
其中正確結(jié)論的序號(hào)是
 
(把所有正確結(jié)論的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

橢圓的焦點(diǎn)在x軸上,離心率為
3
2
,且橢圓被直線(xiàn)y=x+2截得的線(xiàn)段長(zhǎng)為
16
2
5
,求橢圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC所在平面上有三點(diǎn)P、Q、R,滿(mǎn)足,
PA
+3
PB
+
PC
=3
AB
,
QA
+
QB
+3
QC
=3
BC
,3
RA
+
RB
+
RC
=3
CA
,則△PQR的面積與△ABC的面積之比為(  )
A、1:2B、12:25
C、12:13D、13:25

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3+ax2+bx+2,當(dāng)x=-1時(shí),f(x)的極大值為7.求:
(1)a,b的值;
(2)函數(shù)f(x)的極小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)定點(diǎn)A(3,4)任作互相垂直的兩條線(xiàn)l1與l2,且l1與x軸交于M點(diǎn),l2與y軸交于N點(diǎn),求線(xiàn)段MN中點(diǎn)P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若a≠1,求函數(shù)f(x)=x-
1
2
ax2-ln(x+1)的極值點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

△ABC中,若lga-lgc=lgsinB=-lg
2
B∈(0,
π
2
)
,則△ABC的形狀是( 。
A、等邊三角形
B、等腰三角形
C、等腰直角三角形
D、直角三角形

查看答案和解析>>

同步練習(xí)冊(cè)答案