【題目】某校計(jì)劃面向高二年級(jí)文科學(xué)生開(kāi)設(shè)社會(huì)科學(xué)類(lèi)和自然退坡在校本選修課程,某文科班有50名學(xué)生,對(duì)該班選課情況進(jìn)行統(tǒng)計(jì)可知:女生占班級(jí)人數(shù)的60%,選社會(huì)科學(xué)類(lèi)的人數(shù)占班級(jí)人數(shù)的70%,男生有10人選自然科學(xué)類(lèi).

1)根據(jù)題意完成以下列聯(lián)表:

選擇自然科學(xué)類(lèi)

選擇社會(huì)科學(xué)類(lèi)

合計(jì)

男生

女生

2)判斷是否有99%的把握認(rèn)為科類(lèi)的選擇與性別有關(guān)?

附:,其中

【答案】1)列聯(lián)表見(jiàn)解析

2)沒(méi)有99%的把握認(rèn)為科類(lèi)的選擇與性別有關(guān)

【解析】

1)由已知比例關(guān)系求得女生和男生總?cè)藬?shù),再求得社會(huì)科學(xué)類(lèi)人數(shù),即可知自然學(xué)科類(lèi)人數(shù),即可列出列聯(lián)表;

2)由獨(dú)立性檢驗(yàn)中觀測(cè)值的計(jì)算公式計(jì)算值,與表中數(shù)據(jù)對(duì)比即可判定.

解:(1)根據(jù)題意可知,女生人數(shù)為,男生人數(shù)為20,

選社會(huì)科學(xué)類(lèi)人數(shù)為,選自然科學(xué)類(lèi)人數(shù)為15,且其中男生占10人,

列聯(lián)表如下:

選擇自然科學(xué)類(lèi)

選擇社會(huì)科學(xué)類(lèi)

合計(jì)

男生

10

10

20

女生

5

25

30

合計(jì)

15

35

50

2)由(1)中數(shù)據(jù),的觀測(cè)值,

所以沒(méi)有99%的把握認(rèn)為科類(lèi)的選擇與性別有關(guān).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)的部分圖象如圖所示,點(diǎn)A,BC在圖象上,,并且

1)求的值及點(diǎn)B的坐標(biāo);

2)若,且,求的值;

3)將函數(shù)的圖象上各點(diǎn)的縱坐標(biāo)變?yōu)樵瓉?lái)的倍,橫坐標(biāo)不變,再將所得圖象各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的倍,縱坐標(biāo)不變,最后將所得圖象向右平移個(gè)單位,得到的圖象,若關(guān)于x的方程在區(qū)間上有兩個(gè)不同解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線的斜率;

(2)討論函數(shù)的單調(diào)性;

(3)當(dāng)函數(shù)有極值時(shí),若對(duì), 恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】國(guó)家質(zhì)量監(jiān)督檢驗(yàn)檢疫局于2004年5月31日發(fā)布了新的《車(chē)輛駕駛?cè)藛T血液、呼吸酒精含量閥值與檢驗(yàn)》國(guó)家標(biāo)準(zhǔn),新標(biāo)準(zhǔn)規(guī)定,車(chē)輛駕駛?cè)藛T血液中的酒精含量大于或等于20毫克/百毫升,小于80毫克/百毫克升為飲酒駕車(chē),血液中的酒精含量大于或等于80毫克/百毫升為醉酒駕車(chē),經(jīng)過(guò)反復(fù)試驗(yàn),喝1瓶啤酒后酒精在人體血液中的變化規(guī)律的“散點(diǎn)圖”如下:

該函數(shù)模型如下:

根據(jù)上述條件,回答以下問(wèn)題:

(1)試計(jì)算喝1瓶啤酒后多少小時(shí)血液中的酒精含量達(dá)到最大值?最大值是多少?

(2)試計(jì)算喝1瓶啤酒后多少小時(shí)后才可以駕車(chē)?(時(shí)間以整小時(shí)計(jì)算)

(參數(shù)數(shù)據(jù): ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)=x2-(a+2)x+alnx(aR).

1)求函數(shù)f(x)的單調(diào)區(qū)間;

2)若a=4,y=f(x)的圖象與直線y=m有三個(gè)交點(diǎn),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在多面體中,四邊形是菱形,⊥平面.

(1)求證:平面⊥平面

(2)若設(shè)與平面所成夾角為,且,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)上的偶函數(shù),對(duì)于任意都有成立,當(dāng),且時(shí),都有.給出以下三個(gè)命題:

①直線是函數(shù)圖像的一條對(duì)稱軸;

②函數(shù)在區(qū)間上為增函數(shù);

③函數(shù)在區(qū)間上有五個(gè)零點(diǎn).

問(wèn):以上命題中正確的個(gè)數(shù)有( ).

A.個(gè)B.個(gè)C.個(gè)D.個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著我國(guó)中醫(yī)學(xué)的發(fā)展,藥用昆蟲(chóng)的使用相應(yīng)愈來(lái)愈多.每年春暖以后至寒冬前,是昆蟲(chóng)大量活動(dòng)與繁殖季節(jié),易于采集各種藥用昆蟲(chóng).已知一只藥用昆蟲(chóng)的產(chǎn)卵數(shù)與一定范圍內(nèi)的溫度有關(guān),于是科研人員在3月份的31天中隨機(jī)挑選了5天進(jìn)行研究,現(xiàn)收集了該種藥用昆蟲(chóng)的5組觀測(cè)數(shù)據(jù)如下表:

日期

2

7

15

22

30

溫度

10

11

13

12

8

產(chǎn)卵數(shù)/個(gè)

23

25

30

26

16

(1)從這5天中任選2天,記這兩天藥用昆蟲(chóng)的產(chǎn)卵分別為,求事件,均不小于25”的概率;

(2)科研人員確定的研究方案是:先從這五組數(shù)據(jù)中任選2組,用剩下的3組數(shù)據(jù)建立關(guān)于的線性回歸方程,再對(duì)被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).

(ⅰ)若選取的是32日與30日的兩組數(shù)據(jù),請(qǐng)根據(jù)37日、15日和22日這三天的數(shù)據(jù),求出關(guān)于的線性回歸方程;

(ⅱ)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2個(gè),則認(rèn)為得到的線性回歸方程是可靠的,試問(wèn)(。┲兴玫木性回歸方程是否可靠?

附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),則方程)的實(shí)數(shù)根個(gè)數(shù)不可能為( )

A. 5個(gè) B. 6個(gè) C. 7個(gè) D. 8個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案