【題目】已知橢圓的離心率為,且以原點(diǎn)為圓心,以短軸長為直徑的圓過點(diǎn).

1)求橢圓的標(biāo)準(zhǔn)方程;

2)若過點(diǎn)的直線與橢圓交于不同的兩點(diǎn),且與圓沒有公共點(diǎn),設(shè)為橢圓上一點(diǎn),滿足為坐標(biāo)原點(diǎn)),求實(shí)數(shù)的取值范圍.

【答案】12

【解析】

1)利用直線與圓相切的充要條件列出方程求出的值,利用橢圓的離心率公式得到,的關(guān)系,再利用橢圓本身三個(gè)參數(shù)的關(guān)系求出,的值,將,的值代入橢圓的方程即可;

2)設(shè)的方程代入橢圓方程,利用確定,,三點(diǎn)之間的關(guān)系,利用點(diǎn)在橢圓上,建立方程,從而可求實(shí)數(shù)取值范圍.

1以原點(diǎn)為圓心,橢圓的短半軸長為半徑的圓與直線相切

根據(jù)點(diǎn)到直線距離公式可得:

橢圓的離心率為

橢圓C的方程為:

2)由題意直線斜率不為,

設(shè)直線

設(shè),

由韋達(dá)定理

點(diǎn)在橢圓上

直線與圓沒有公共點(diǎn),則,

.

由①②可得:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】12,34,5,6這六個(gè)數(shù)字所組成的允許有重復(fù)數(shù)字的三位數(shù)中,各個(gè)數(shù)位上的數(shù)字之和為9的三位數(shù)共有(

A.16個(gè)B.18個(gè)C.24個(gè)D.25個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在以,,,,為頂點(diǎn)的五面體中,平面平面,,四邊形為平行四邊形,且.

1)求證:;

2)若,直線與平面所成角為60°,求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知衡量病毒傳播能力的最重要指標(biāo)叫做傳播指數(shù)RO.它指的是,在自然情況下(沒有外力介入,同時(shí)所有人都沒有免疫力),一個(gè)感染到某種傳染病的人,會(huì)把疾病傳染給多少人的平均數(shù).它的簡單計(jì)算公式是:確認(rèn)病例增長率系列間隔,其中系列間隔是指在一個(gè)傳播鏈中,兩例連續(xù)病例的間隔時(shí)間(單位:天).根據(jù)統(tǒng)計(jì),確認(rèn)病例的平均增長率為,兩例連續(xù)病例的間隔時(shí)間的平均數(shù)為天,根據(jù)以上RO數(shù)據(jù)計(jì)算,若甲得這種傳染病,則輪傳播后由甲引起的得病的總?cè)藬?shù)約為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知曲線的參數(shù)方程:為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)求曲線的普通方程;

2)過曲線上一點(diǎn)作直線與曲線交于兩點(diǎn),中點(diǎn)為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】分形幾何是一門以不規(guī)則幾何形態(tài)為研究對(duì)象的幾何學(xué),科赫曲線是比較典型的分形圖形,1904年瑞典數(shù)學(xué)家科赫第一次描述了這種曲線,因此將這種曲線稱為科赫曲線.其生成方法是:(I)將正三角形(圖(1))的每邊三等分,以每邊三等分后的中間的那一條線段為一邊,向形外作等邊三角形,并將這“中間一段”去掉,得到圖(2);(II)將圖(2)的每邊三等分,重復(fù)上述的作圖方法,得到圖(3);(Ⅲ)再按上述方法繼續(xù)做下去……,設(shè)圖(1)中的等邊三角形的邊長為1,并且分別將圖(1)、圖(2)、圖(3)、…、圖(n)、…中的圖形依次記作,,,…,,…,設(shè)的周長為,則為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是等腰梯形,,是等邊三角形,點(diǎn)上,且

1)證明://平面

2)若平面平面,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在幾何體中,如圖,四邊形為平行四邊形,,平面平面平面

1)若三棱錐的體積為1,求

2)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,四邊形是直角梯形,且是正三角形,的中點(diǎn).

1)求證:平面;

2)求直線與平面所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案