【題目】如圖,在四棱錐中,四邊形是直角梯形,且是正三角形,的中點(diǎn).

1)求證:平面;

2)求直線與平面所成角的正弦值.

【答案】1)證明見(jiàn)解析;(2

【解析】

1)證明四邊形是平行四邊形可推出,即可證明線面平行;(2)作出線面角,通過(guò)解三角形知識(shí)求解或建立空間直角坐標(biāo)系,利用空間向量的夾角公式求解.

1)證明:取的中點(diǎn),連接,

因?yàn)?/span>的中位線,所以,且,

因?yàn)?/span>,所以,

則四邊形是平行四邊形,所以

又因?yàn)?/span>平面平面,

所以平面.

2)解法一:取的中點(diǎn),連接,

因?yàn)?/span>是正三角形,所以,

在直角梯形中,因?yàn)?/span>,

所以可得,且

,平面,平面,

所以平面

平面,所以平面平面

過(guò)點(diǎn),垂足是,連接,

即是直線與平面所成的角,

中,,可得,

所以,又,

所以,

所以直線與平面所成角的正弦值是.

解法二:如圖,以為原點(diǎn),所在直線分別為軸、軸建立空間直角坐標(biāo)系,

由已知條件得,

所以,

設(shè),由

.

所以,

設(shè)平面的法向量,

得平面的一個(gè)法向量是,

可得,則

設(shè)直線與平面所成角為,

,

所以直線與平面所成角的正弦值是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,且以原點(diǎn)為圓心,以短軸長(zhǎng)為直徑的圓過(guò)點(diǎn).

1)求橢圓的標(biāo)準(zhǔn)方程;

2)若過(guò)點(diǎn)的直線與橢圓交于不同的兩點(diǎn),且與圓沒(méi)有公共點(diǎn),設(shè)為橢圓上一點(diǎn),滿足為坐標(biāo)原點(diǎn)),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在單位圓Ox2+y21上任取一點(diǎn)Px,y),圓Ox軸正向的交點(diǎn)是A,設(shè)將OA繞原點(diǎn)O旋轉(zhuǎn)到OP所成的角為θ,記x,y關(guān)于θ的表達(dá)式分別為xfθ),ygθ),則下列說(shuō)法正確的是( 。

A.xfθ)是偶函數(shù),ygθ)是奇函數(shù)

B.xfθ)在為增函數(shù),ygθ)在為減函數(shù)

C.fθ+gθ≥1對(duì)于恒成立

D.函數(shù)t2fθ+g2θ)的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某科研團(tuán)隊(duì)對(duì)例新冠肺炎確診患者的臨床特征進(jìn)行了回顧性分析.其中名吸煙患者中,重癥人數(shù)為人,重癥比例約為;名非吸煙患者中,重癥人數(shù)為人,重癥比例為.根據(jù)以上數(shù)據(jù)繪制列聯(lián)表,如下:

吸煙人數(shù)

非吸煙人數(shù)

總計(jì)

重癥人數(shù)

30

120

150

輕癥人數(shù)

100

800

900

總計(jì)

130

920

1050

(1)根據(jù)列聯(lián)表數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為新冠肺炎重癥和吸煙有關(guān)?

(2)已知每例重癥患者平均治療費(fèi)用約為萬(wàn)元,每例輕癥患者平均治療費(fèi)用約為萬(wàn)元.現(xiàn)有吸煙確診患者20人,記這名患者的治療費(fèi)用總和為,求.

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,平面,,,點(diǎn)的交點(diǎn).

1)求二面角的余弦值;

2)若點(diǎn)在線段上且平面,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在公比大于0的等比數(shù)列{an}中,已知a3a5a4,且a23a4,a3成等差數(shù)列.

1)求{an}的通項(xiàng)公式;

2)已知Sna1a2an,試問(wèn)當(dāng)n為何值時(shí),Sn取得最大值,并求Sn的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知如圖一,,,分別為,的中點(diǎn),上,且,中點(diǎn),將沿折起,沿折起,使得重合于一點(diǎn)(如圖二),設(shè)為

1)求證:平面;

2)求二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為了有效地加強(qiáng)高中生自主管理能力,推出了一系列措施,其中自習(xí)課時(shí)間的自主管理作為重點(diǎn)項(xiàng)目,學(xué)校有關(guān)處室制定了高中生自習(xí)課時(shí)間自主管理方案”.現(xiàn)準(zhǔn)備對(duì)該方案進(jìn)行調(diào)查,并根據(jù)調(diào)查結(jié)果決定是否啟用該方案,調(diào)查人員分別在各個(gè)年級(jí)隨機(jī)抽取若干學(xué)生對(duì)該方案進(jìn)行評(píng)分,并將評(píng)分分成,,七組,繪制成如圖所示的頻率分布直方圖.

相關(guān)規(guī)則為①采用百分制評(píng)分,內(nèi)認(rèn)定為對(duì)該方案滿意,不低于80分認(rèn)定為對(duì)該方案非常滿意,60分以下認(rèn)定為對(duì)該方案不滿意;②學(xué)生對(duì)方案的滿意率不低于即可啟用該方案;③用樣本的頻率代替概率.

1)從該校學(xué)生中隨機(jī)抽取1人,求被抽取的這位同學(xué)非常滿意該方案的概率,并根據(jù)頻率分布直方圖求學(xué)生對(duì)該方案評(píng)分的中位數(shù).

2)根據(jù)所學(xué)統(tǒng)計(jì)知識(shí),判斷該校是否啟用該方案,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)求在點(diǎn)處的切線方程;

2)(i)若恒成立,求的取值范圍;

i i)當(dāng)時(shí),證明

查看答案和解析>>

同步練習(xí)冊(cè)答案