已知關(guān)于x的二項(xiàng)式(
x
+
a
3x
n展開(kāi)式的二項(xiàng)式系數(shù)之和為32,常數(shù)項(xiàng)為80,則a的值為
 
考點(diǎn):二項(xiàng)式系數(shù)的性質(zhì)
專題:二項(xiàng)式定理
分析:利用二項(xiàng)式系數(shù)的和,求出n,通過(guò)二項(xiàng)展開(kāi)式的通項(xiàng)公式求出通項(xiàng),令x的指數(shù)為0,即可求出a的值.
解答: 解:二項(xiàng)式(
x
+
a
3x
n展開(kāi)式的二項(xiàng)式系數(shù)之和為32,
∴2n=32,∴n=5;
C
r
5
(
x
)5-r(
a
3x
)r
=
C
r
5
arx
15-5r
6
,令
15-5r
6
=0
,可得r=3,
∵展開(kāi)式的常數(shù)項(xiàng)是80,
C
3
5
a3=80

解得a=2.
故答案為:2.
點(diǎn)評(píng):本題考查利用二項(xiàng)展開(kāi)式的通項(xiàng)公式解決二項(xiàng)展開(kāi)式的特定項(xiàng)問(wèn)題,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知各項(xiàng)均為正數(shù)的數(shù)列{an}中,a1=1,Sn為數(shù)列{an}的前n項(xiàng)和.
(Ⅰ)若數(shù)列{an},{an2}都是等差數(shù)列,求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若2Sn=an2+an,試比較
1
a1a2
+
1
a2a3
+…+
1
anan+1
與1的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)全集U=R,集合A={x∈R|x2-2x<0},B={y|y=ex+1,x∈R},則A∩B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

記實(shí)數(shù)x1,x2,…,xn中的最大數(shù)為max{x1,x2,…,xn},最小數(shù)為min{x1,x2,…,xn}.已知實(shí)數(shù)1≤x≤y且三數(shù)能構(gòu)成三角形的三邊長(zhǎng),若t=max{
1
x
,
x
y
,y}•min{
1
x
x
y
,y},則t的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)定義在[x1,x2]的函數(shù)y=f(x)的圖象的兩個(gè)端點(diǎn)為A(x1,y1),B(x2,y2).M(x,y)是f(x)圖象上任意一點(diǎn),其中x=λx1+(1-λ)x2,(λ∈R),且
ON
OA
+(1-λ)
OB
,若不等式|
MN
|≤k恒成立,則稱函數(shù)f(x)在[x1,x2]上“k階線性近似”.若函數(shù)y=
x
與y=
3x
在[0,1]上有且僅有一個(gè)“k階線性近似”,則實(shí)數(shù)k的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知單位向量
i
,
j
,
k
兩兩所成的夾角均為θ(0<θ<π,且θ≠
π
2
),若空間向量
a
滿足
a
=x
i
+y
j
+z
k
(x,y,z∈R),則有序?qū)崝?shù)對(duì)(x,y,z)稱為向量
a
在“仿射”坐標(biāo)系Oxyz(O為坐標(biāo)原點(diǎn))下的“仿射”坐標(biāo),記作
a
=(x,y,z)θ.有下列命題:
①已知
a
=(2,0,-1)θ,
b
=(1,0,2)θ,則
a
b
=0;
②已知
a
=(x,y,0)
π
3
b
=(0,0,z)
π
3
,其中xyz≠0,則當(dāng)且僅當(dāng)x=y時(shí),向量
a
b
的夾角取得最小值;
③已知
a
=(x1,y1,z1θ,
b
=(x2,y2,z2θ,則
a
-
b
=(x1-x2,y1-y2,z1-z2)θ
;
④已知
OA
=(1,0,0)
π
3
OB
=(0,1,0)
π
3
,
OC
=(0,0,1)
π
3
,則三棱錐O-ABC體積為V=
2
12

其中真命題有
 
(填寫真命題的所有序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

閱讀如圖所示的程序框圖,輸出結(jié)果s的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知∠BAC在平面α內(nèi),PA是α的斜線,若∠PAB=∠PAC=∠BAC=60°,PA=a,則點(diǎn)P到平面α的距離為( 。
A、
3
3
a
B、
3
2
a
C、
6
3
a
D、
6
2
a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(m,n),
b
=(cosx,sinx),函數(shù)f(x)=
a
b
-2.
(1)設(shè)m=n=1,x為某三角形的內(nèi)角,求f(x)=-1時(shí)x的值;
(2)設(shè)m=4,n=3,當(dāng)函數(shù)f(x)取最大值時(shí),求cos2x的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案