【題目】如圖,邊長為3的等邊三角形ABC,E,F分別在邊AB,AC上,且,MBC邊的中點,AMEF于點O,沿EF,折到DEF的位置,使

1)證明平面EFCB;

2)試在BC邊上確定一點N,使平面DOC,并求的值.

【答案】1)證明見解析 2

【解析】

1)要證平面EFCB,即證平面EFCB的兩條相交直線,由勾股定理可證明,再由線段的比例關系與等邊三角形的性質,易證,即可得證;

2)連接OC,過EBCN,易證四邊形OENC為平行四邊形,再由相似三角形可得,結合即可求解對應的比例關系

解:(1)證明:在中,易得

,,

,

又∵,,

MBC中點,

,

,

平面EBCF

2

連接OC,過EBCN,

平面DOC

,

∴四邊形OENC為平行四邊形,

,

,

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知三棱錐PABC中,ACBC,ACBC2,PAPBPC3OAB中點,EPB中點.

1)證明:平面PAB⊥平面ABC;

2)求點B到平面OEC的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面為正方形,平面平面,的中點,,.

(1)求二面角的大小;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù).

(1),求的單調區(qū)間;

(2)若當恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)為自然對數(shù)的底數(shù)).

1)若曲線在點處的切線與直線垂直,求的單調區(qū)間;

2)若函數(shù)有兩個極值點,求實數(shù)的取值范圍;

3)證明:當時,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將函數(shù)fx)=cos2x)的圖象向左平移個單位長度后,得到函數(shù)gx)的圖象,則下列結論中正確的是_____.(填所有正確結論的序號)

gx)的最小正周期為4π;

gx)在區(qū)間[0,]上單調遞減;

gx)圖象的一條對稱軸為x;

gx)圖象的一個對稱中心為(,0).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知四棱錐A-BCDE,其中AC=BC=2,ACBC,CD//BECD=2BECD⊥平面ABC,FAD的中點.

1)求證:EF//平面ABC

2)設MAB的中點,若DM與平面ABC所成角的正切值為,求平面ACD與平面ADE夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設直線l的方程為(a1x+y+a+3=0,(aR).

1)若直線l在兩坐標軸上截距的絕對值相等,求直線l的方程;

2)若直線l不經(jīng)過第一象限,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】讀書可以讓人保持思想活躍,讓人得到智慧啟發(fā),讓人滋養(yǎng)浩然之氣,2018年第一期中國青年閱讀指數(shù)數(shù)據(jù)顯示,從供給的角度,文學閱讀域是最多的,遠遠超過了其他閱讀域的供給量.某校采用分層抽樣的方法從1000名文科生和2000名理科生中抽取300名學生進行了在暑假閱讀內容和閱讀時間方面的調查,得到數(shù)據(jù)如表:

文學閱讀人數(shù)

非文學閱讀人數(shù)

調查人數(shù)

理科生

130

文科生

45

合計

1)先完成上面的表格,并判斷能否有90%的把握認為學生所學文理與閱讀內容有關?

2300名被調查的學生中,隨機進取30名學生,整理其日平均閱讀時間(單位:分鐘)如表:

閱讀時間

男生人數(shù)

2

4

3

5

2

女生人數(shù)

1

3

4

3

3

試估計這30名學生日閱讀時間的平均值(同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點的值作代表)

3)從(2)中日均閱讀時間不低于120分鐘的學生中隨機選取2人介紹閱讀心得,求這兩人都是女生的概率.

參考公式: ,其中.

參考數(shù)據(jù):

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步練習冊答案