【題目】某校高三數(shù)學(xué)競(jìng)賽初賽考試后,對(duì)部分考生的成績(jī)進(jìn)行統(tǒng)計(jì)(考生成績(jī)均不低于90分,滿分150分),將成績(jī)按如下方式分成六組,若第四、五、六組的人數(shù)依次成等差數(shù)列,且第六組有4人.

(1)請(qǐng)補(bǔ)充完整頻率分布直方圖,并估計(jì)這組數(shù)據(jù)的平均數(shù)M;

(2)現(xiàn)根據(jù)初賽成績(jī)從第四組和第六組中任意選2人,記他們的成績(jī)分別為.若,則稱此二人為“黃金幫扶組”.試求選出的二人為“黃金幫扶組”的概率

(3)以此樣本的頻率當(dāng)做概率,現(xiàn)隨機(jī)在這所有考生中選出3名學(xué)生,求成績(jī)不低于120分的人數(shù)的分布列及期望.

【答案】解:()設(shè)第四,五組的頻率分別為,則

①②解得,(2)

從而得出直方圖(如圖所示)

(3)

(4)

)依題意第四組人數(shù)為,故(6)

)依題意樣本總?cè)藬?shù)為,成績(jī)不低于120分人數(shù)為(7)

故在樣本中任選1人,其成績(jī)不低于120分的概率為又由已知的可能取值為0,1,23,

,, 的分布列如下:


0









(10)

依題意.

【解析】略

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】【選修4-4:坐標(biāo)系與參數(shù)方程】

在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系.已知曲線的極坐標(biāo)方程為.傾斜角為,且經(jīng)過(guò)定點(diǎn)的直線與曲線交于兩點(diǎn).

(Ⅰ)寫出直線的參數(shù)方程的標(biāo)準(zhǔn)形式,并求曲線的直角坐標(biāo)方程;

(Ⅱ)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)有獎(jiǎng)銷售中,購(gòu)滿100元商品得1張獎(jiǎng)券,多購(gòu)多得.1 000張獎(jiǎng)券為一個(gè)開獎(jiǎng)單位,設(shè)特等獎(jiǎng)1個(gè),一等獎(jiǎng)10個(gè),二等獎(jiǎng)50個(gè).設(shè)1張獎(jiǎng)券中特等獎(jiǎng)、一等獎(jiǎng)、二等獎(jiǎng)的事件分別為A,B,C,求:

(1)P(A),P(B),P(C).

(2)1張獎(jiǎng)券的中獎(jiǎng)概率.

(3)1張獎(jiǎng)券不中特等獎(jiǎng),且不中一等獎(jiǎng)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】出一份道題的數(shù)學(xué)試卷,試卷內(nèi)的道題是這樣產(chǎn)生的從含有道選擇題的題庫(kù)中隨機(jī)抽道填空題的題庫(kù)中隨機(jī)抽;道解答題的題庫(kù)中隨機(jī)抽.使用合適的方法確定這套試卷的序號(hào)(選擇題編號(hào)為,填空題編號(hào)為,解答題編號(hào)為).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】長(zhǎng)方體中, , 分別是, 的中點(diǎn),

(Ⅰ)求證: 平面;

(Ⅱ)求證:平面平面

(Ⅲ)在線段上是否存在一點(diǎn),使得二面角,若存在,求的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知橢圓),圓),若圓的一條切線與橢圓相交于兩點(diǎn).

(1)當(dāng), 時(shí),若點(diǎn)都在坐標(biāo)軸的正半軸上,求橢圓的方程;

(2)若以為直徑的圓經(jīng)過(guò)坐標(biāo)原點(diǎn),探究是否滿足,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=exaxa(a∈R且a≠0)在點(diǎn)處的切線

與直線平行, (1)求實(shí)數(shù)a的值,

(2)求此時(shí)f(x)在[-2,1]上的最大、最小值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 )的焦距為,點(diǎn)上.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)點(diǎn)上,點(diǎn)的軌跡為曲線,過(guò)原點(diǎn)作直線與曲線交于兩點(diǎn),點(diǎn),證明: 為定值,并求出定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)是長(zhǎng)軸長(zhǎng)為的橢圓 上異于頂點(diǎn)的一個(gè)動(dòng)點(diǎn), 為坐標(biāo)原點(diǎn), 為橢圓的右頂點(diǎn),點(diǎn)為線段的中點(diǎn),且直線的斜率之積恒為.

(1)求橢圓的方程;

(2)設(shè)過(guò)左焦點(diǎn)且不與坐標(biāo)軸垂直的直線交橢圓于兩點(diǎn),線段的垂直平分線與軸交于點(diǎn),點(diǎn)橫坐標(biāo)的取值范圍是,求的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案